Lunar and Lagrangian Point L1/L2 CubeSat Communication and Navigation Considerations

Scott Schaire, Yen F Wong, Serhat Altunc, George Bussey, Marta Shelton, Dave Folta, Cheryl Gramling
Goddard Space Flight Center

Peter Celeste, Mike Anderson, Trish Perrotto
Booz Allen Hamilton

Ben Malphrus, Jeff Kruth
Morehead State University

Presenter
Scott H Schaire
Scott.H.Schaire@NASA.gov
EM-1 CubeSats & Lunar IceCube
Mission Overview

- NASA’s EM-1 will be the maiden voyage of the Space Launch System (SLS), ushering NASA into a new era of solar system exploration
 - SLS, supporting human exploration beyond Low Earth Orbit (LEO), will also serve as a platform to launch small satellites flying onboard as secondary payloads
 - EM-1 will launch thirteen CubeSats that will perform science investigations that address NASA Strategic Knowledge Gaps
 - CubeSat missions will also demonstrate a variety of enabling technologies, including communication and ranging

- Lunar IceCube will be one of the CubeSats to be launched from EM-1
 - Lunar IceCube is a partnership between Morehead State University (MSU), GSFC, JPL, the Busek Company, and Vermont Technical College
 - Lunar IceCube will prospect for water in solid, liquid, and vapor forms and other lunar volatiles from a ~100 km lunar orbit
 - Lunar IceCube will be deployed by the SLS at Bus Stop One, at a distance of approximately 25,000km
Lunar IceCube: Communication & Navigation Needs

- Lunar IceCube navigation and communication poses challenges:
 - Precise orbit determination after deployment is required for lunar flyby maneuver planning
 - Establishing communication links given limited onboard power

- To meet these challenges a large aperture on the ground is required:
 - DSN will be the primary network
 - MSU will manage ground operations for all phases and utilize their 21-m antenna to provide significant gain and link margin
 - The NEN, as a significant addition, can provide comprehensive tracking and telemetry services from facilities around the globe

- Lunar IceCube navigation will be performed by the GSFC Flight Dynamics Dynamics Facility (FDF):
 - GSFC will provide navigation and maneuver planning
 - FDF will provide planning, ephemeris generation, tracking evaluation, operational products, and data archiving

- Required tracking data and related accuracies vary over the transfer trajectory:
 - Frequency of tracking will vary from every opportunity to ever few days depending on the phase of the mission
 - Navigation accuracies of <100 m in position and <0.1 cm/s in velocity are required
Lunar IceCube: Radiation Requirements

- GSFC radiation branch performed an analysis for Lunar IceCube
 - The radiation environment is harsh from a Galactic (Heavy Ion) Radiation perspective
 - Trips through the Van Allen belts early in the mission will expose Lunar IceCube to Total Ionizing Dose (TID) Radiation

- Lunar Ice Cube Radiation Tolerance Requirements:
 - Direct Radiative Effect (DRE) Electrical, Electronic, and Electromechanical (EEE) Parts shall meet Linear Energy Transfer Threshold (LETth) of > 37 MeV·cm²/mg for soft errors from single events (SEU, Single Event Transients, etc.)
 - DRE EEE Parts shall meet LETth of > 75 MeV·cm²/mg for potential destructive events (SEL, SEB, SEGR, etc.)
 - DRE EEE Parts shall meet 5 krads (Si) Total Ionizing Dose (TID) assuming 50 mils Al shielding
Near Earth Network (NEN) is composed of stations distributed throughout the world. The NEN supports orbits in the Near Earth region from Earth to 2 million kilometers.
Sample CubeSat Radios For Lunar and L1/L2 Missions

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Vendor / Name</th>
<th>Size (cm)</th>
<th>Mass (g)</th>
<th>Flight Heritage</th>
<th>Max Data Rate</th>
<th>NASA Network Compatibility*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Band</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Innoflight / SCR-100</td>
<td>8.2x8.2x3.2</td>
<td>300</td>
<td>Sense NanoSat</td>
<td>4.5 Mbps Tx</td>
<td>NEN, SN, DSN</td>
</tr>
<tr>
<td></td>
<td>Tethers Unlimited / SWIFT-SLX</td>
<td>10x10x3.5</td>
<td>380</td>
<td>None</td>
<td>15 Mbps Tx</td>
<td>NEN, SN, DSN</td>
</tr>
<tr>
<td></td>
<td>Clyde Space / S-Band TX (STX)</td>
<td>9.6x9.0x1.6</td>
<td><80</td>
<td>UKube-1</td>
<td>2 Mbps Tx</td>
<td>Partially NEN</td>
</tr>
<tr>
<td></td>
<td>Microhard / MHX-2420</td>
<td>8.9x5.3x1.8</td>
<td>75</td>
<td>RAX</td>
<td>230 kbps Tx 115 kbps Rx</td>
<td>Partially NEN</td>
</tr>
<tr>
<td></td>
<td>Quasonix / nano TX</td>
<td>3.3x3.3x3.3</td>
<td><200</td>
<td>CPOD</td>
<td>46 Mbps Tx</td>
<td>NEN</td>
</tr>
<tr>
<td>X-Band</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LASP & GSFC / X-band Radio</td>
<td>9.8x9x2</td>
<td>500</td>
<td>None</td>
<td>12.5 Mbps Tx 50 kbps Rx</td>
<td>NEN</td>
</tr>
<tr>
<td></td>
<td>Syrlinks / X-band Transmitter</td>
<td>9x9.6x2.4</td>
<td>225</td>
<td>None</td>
<td>5 Mbps Tx</td>
<td>NEN</td>
</tr>
<tr>
<td></td>
<td>Marshall / X-band Tx</td>
<td>10.8x10.8x7.6</td>
<td><1000</td>
<td>FASTSat2</td>
<td>150 Mbps Tx 50 kbps Rx</td>
<td>NEN</td>
</tr>
<tr>
<td></td>
<td>Tethers Unlimited / SWIFT-XTS</td>
<td>8.6x4.5 (0.375U)</td>
<td>500</td>
<td>None</td>
<td>300 Mbps Tx</td>
<td>NEN, SN, DSN</td>
</tr>
<tr>
<td></td>
<td>JPL / Iris Transponder</td>
<td>0.4U</td>
<td>400</td>
<td>INSPIRE</td>
<td>256 kbps Tx 8 kbps Rx</td>
<td>DSN, Partially NEN</td>
</tr>
<tr>
<td>Ka-Band</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canopus Systems / Ames Ka-band Tx</td>
<td>18x10x8.5</td>
<td>820</td>
<td>None</td>
<td>125 Mbps Tx</td>
<td>NEN, SN, DSN</td>
</tr>
<tr>
<td></td>
<td>Tethers Unlimited / SWIFT-KTX</td>
<td>8.6x4.5 (0.375U)</td>
<td>500</td>
<td>None</td>
<td>300 Mbps Tx</td>
<td>NEN, SN, DSN</td>
</tr>
</tbody>
</table>

* Compatibility shown as advertised by vendor and needs to be verified at GSFC Compatibility Test Laboratory (CTL)
Sample CubeSat Antennas For Lunar and L1/L2 Missions

<table>
<thead>
<tr>
<th>Antenna Vendor</th>
<th>Antenna Type</th>
<th>Band</th>
<th>Antenna Gain (dBi)</th>
<th>Dimensions</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna Development Corporation</td>
<td>Low-Gain Patch Antenna (LGA)</td>
<td>S</td>
<td>2</td>
<td>(4 x 4x0.25)"</td>
<td>115</td>
</tr>
<tr>
<td>Haigh Farr S-band Patch</td>
<td>Patch</td>
<td>S</td>
<td>2</td>
<td>(94x76x4) mm</td>
<td>62</td>
</tr>
<tr>
<td>University of Southern California’s Information Sciences Institute Space Engineering Research Center (SERC)</td>
<td>Deployable High Gain Antenna</td>
<td>S/X</td>
<td>>24</td>
<td>50 cm</td>
<td>760</td>
</tr>
<tr>
<td>BDS Phantom Works</td>
<td>Deployable High Gain Antenna</td>
<td>S</td>
<td>18</td>
<td>50 cm</td>
<td>1000</td>
</tr>
<tr>
<td>Antenna Development Corporation</td>
<td>Patch</td>
<td>X</td>
<td>9</td>
<td>(1.85x1.85x0.55)"</td>
<td>300</td>
</tr>
<tr>
<td>BDS Phantom Works Deployable High Gain X-band Antenna</td>
<td>Deployable High Gain Antenna</td>
<td>X</td>
<td>25</td>
<td>50 cm</td>
<td>1000</td>
</tr>
<tr>
<td>Canopus System Horn</td>
<td>Horn</td>
<td>Ka</td>
<td>25</td>
<td>18 cm</td>
<td>820</td>
</tr>
</tbody>
</table>

University of Southern California’s Information Sciences Institute Space Engineering Research Center (SERC)
Lunar IceCube Communication System / Iris Transponder

- **Lunar IceCube communication system consists of:**
 - 4 custom design X-band patch antennas
 - Iris transponder without a diplexer

- **Patch Antenna performance characteristics:**
 - Receive Band: 7.145-7.190 GHz
 - Transmit Band: 8.400-8.450 GHZ
 - Gain: 6 dBi

- **Iris transponder features:**
 - Modular design allows user to select layers necessary to meet needs, be it S-band, X-band, Tx, Rx
 - The transponder is radiation tolerant up to 15 Krads and its memory modules are all radiation tolerant

- **Iris transponder features continued:**
 - Switchable discrete data rates
 - Telemetry rates ranging from 62.5 bps up to 256 kbps; Lunar IceCube is exploring telemetry data rates of 16, 32, 64, 128 kbps
 - Command rates ranging from 62.5 bps up to 8 kbps, in powers of two
 - Lunar IceCube plans to use the power efficient Turbo 1/6 code

Patch antennas and Iris transponder
Lunar IceCube NASA NEN Ground Station Coverage

- DSN/MSU will provide prime support to Lunar IceCube during all phases, but the NEN would be able to provide additional comprehensive support
 - MSU has visibility for the 8-hour event following deployment, but not for the next three cruise events
 - DSN/MSU will have lengthy periods where only one site has coverage

- As a significant addition, the NEN could ensure a minimum of two sites in view at all times and provide supplemental and backup support

- Based on current NEN locations, four X-band capable equatorial sites would be required to provide full global coverage to Lunar IceCube based on its trajectory
 - The commercial sites SSC Hawaii and Australia are the only NEN stations currently capable of X-band uplink and would be ideal due to their larger antennas (13-m) and equatorial location
 - The NASA owned Wallops site has an 11-m X-band system and is located to complement the coverage provided by the Hawaii and Australia sites
 - The addition of the commercial site in Hartebeesthoek, South Africa, which has a 10-m system, would ensure full global coverage
 - Note: Sites would require modification for Lunar IceCube compatibility
Lunar IceCube had considered the use of either sequential tone ranging or Pseudo-Noise (PN) ranging, but has decided to use sequential ranging.

Lunar IceCube implementation of sequential ranging will use two modes for uplink and one mode for downlink:

- Ranging data channel having a major tone for uplink
- Command data channel modulating a subcarrier
- A single tone ranging channel directly phase modulating the RF carrier for downlink

A NEN link analysis was performed to evaluate NEN X-band support for Lunar IceCube science data downlink:

- Achievable data rate will vary depending on the distance to the Earth during different phases

NEN Achievable Data Rates at a Range of 400,000 km

<table>
<thead>
<tr>
<th>Station</th>
<th>X-band G/T (dB/K)*</th>
<th>Achievable Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wallops</td>
<td>35.4</td>
<td>16 kbps</td>
</tr>
<tr>
<td>Australia</td>
<td>37.7</td>
<td>32 kbps</td>
</tr>
<tr>
<td>Hawaii</td>
<td>37.7</td>
<td>32 kbps</td>
</tr>
<tr>
<td>Hartebeesthoek</td>
<td>30.5</td>
<td>8 kbps</td>
</tr>
</tbody>
</table>

* Clear sky and 10° elevation angle

Note: The achievable data rate is 64 kbps at a 400,000 km range for the MSU 21-m antenna.
NEN Coverage During Lunar IceCube Deployment Phase - Video

Deployment of Lunar IceCube from SLS

Wallops coverage (128 kbps)

7 Oct 2018 15:39:56.961
NEN Coverage During Lunar IceCube Deployment Phase

Event Stop: 8 Oct 2018 03:52:16

<table>
<thead>
<tr>
<th>Site</th>
<th>Max Range</th>
<th>Achievable Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>136,626 km</td>
<td>256 kbps</td>
</tr>
<tr>
<td>Australia</td>
<td>137,318 km</td>
<td>256 kbps</td>
</tr>
<tr>
<td>Wallops</td>
<td>109,643 km</td>
<td>128 kbps</td>
</tr>
<tr>
<td>Hart.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Capability</th>
<th>Coverage Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>Rx/Tx/Tracking</td>
<td>4:35</td>
</tr>
<tr>
<td>Australia</td>
<td>Rx/Tx/Tracking</td>
<td></td>
</tr>
<tr>
<td>Wallops</td>
<td>Rx</td>
<td>8:02</td>
</tr>
<tr>
<td>Hart.</td>
<td>Rx</td>
<td></td>
</tr>
<tr>
<td>NEN Sites</td>
<td>-</td>
<td>Single, Dual</td>
</tr>
<tr>
<td>DSN/MSU (6°) Sites</td>
<td>Rx</td>
<td>Dual, Single</td>
</tr>
<tr>
<td>DSN/MSU (10°) Sites</td>
<td>Rx/Tx/Tracking</td>
<td>Dual, Single</td>
</tr>
</tbody>
</table>

Note: Coverage times are based on line of sight coverage and do not guarantee commitment of asset(s) for service. All NEN coverage times assume a 10 degree minimum elevation for RX, TX, and Trk. DSN/MSU assumes a 6 degree minimum elevation for RX and a 10 degree minimum elevation for TX and Trk.
Morehead State Ground Station Modifications and Further Enhancements

- The MSU 21-m antenna system is being upgraded under the support of NASA’s Advanced Exploration Services (AES) to be integrated into the DSN as an auxiliary station to support SmallSat missions
 - This MSU upgrade project serves as a test case to define a path for integration of other ground stations to support SmallSat missions

- The ultimate deliverables of the two-year effort, to be completed in 2018, will be:
 1. Design that includes hardware and software upgrades necessary to provide deep space telemetry, tracking, and command functions compliant with CCSDS SLE specifications
 2. Demonstration of the MSU 21-m antenna as a DSN-compatible operational node
 3. Demonstration of ground system capabilities in demodulating and decoding CubeSat telemetry data, accepting and transmitting commands to CubeSats, and providing Doppler and ranging data for CubeSat deep space navigation strategies and processes

Block Diagram Overview of the Morehead State 21-m DSN Ground Station

- **IF/RF UC & Translator**
- **TXR**
- **ANT**
- **LNA & RF/IF DC**
- **NDA**

- **IF Signal**

- **UPL (USG&UPA)**
- **Monitor API**
- **DTT (post IF)**
- **DCD**

- **Predicted pointing, Doppler, Link perf.**

- **SPS**
- **CDP**

- **Ephemeris, S/C events & link config.**

- **MOC**

- **CMD data**
- **TRK data**
- **TLM data**

- **DSN supplied equipment at MSU**
- **DSN Deep Space Operation Center**
- **Mission**

Legend:
- **MSU equipment**
- **DSN supplied equipment at MSU**
- **DSN Deep Space Operation Center**
- **Mission**
Potential NEN Enhancements and Benefits

- NEN commercial stations at Hawaii and Dongara, Australia have X-band uplink capability that could support EM-1 missions with some minor modifications to these stations
 - Addition of a tunable up converter and IF distribution system between the Cortex modem and the up converter

- NEN is considering adding X-band uplink capability to other NASA NEN stations
 - Addition of X-band uplink will help with frequency crowding in S-band

- NEN Cortex modem enhancements with 1/6 Turbo code and sequential ranging/PN ranging for compatibility with EM-1 CubeSats missions carrying the Iris transponder is potentially under consideration

- NEN ground system enhancements to achieve compatibility with missions carrying an Iris transponder would enable benefits in the form of coverage and larger beamwidth
NEN Benefits For EM-1 CubeSat Missions: Coverage

- NEN NASA-owned and commercial ground systems are positioned around the globe and are able to provide significant to full coverage to CubeSats in lunar orbit or beyond
 - Four select NEN stations could provide ~99.8% coverage at 25,000 km, the approximate distance where Lunar IceCube will separate
 - Full coverage, 100%, could be achievable at ~35,000 km and beyond, assuming four stations
NEN Benefits For EM-1 CubeSat Missions: Beamwidth

- The NEN’s use of smaller apertures provides a larger beamwidth, compared to larger apertures, which could benefit Lunar CubeSats with uncertain ephemeris data
 - SSC Hawaii and Australia 13m would cover over 2.5x the area of a DSN 34m
 - WG1 11m would cover 3.10x the area of a DSN 34m

- Assumptions:
 - Frequency: 8450 MHz
 - The Moon’s angular diameter is 0.5 degrees

- 3 dB Beamwidth for Varying Antenna Diameter*
 - 10m = 0.250 degrees (half of Moon angular diameter)
 - 11m = 0.226 degrees
 - 13m = 0.191 degrees
 - 21m = 0.118 degrees
 - 34m = 0.073 degrees

* Not all antenna diameters depicted in graphic
NEN Lunar And L1/L2 Support Without Any Enhancement

- NEN NASA owned and commercial stations support S, X and Ka frequency bands.
- The station Cortex modem supports a variety of modulation and coding schemes, including power and bandwidth efficient low-density parity-check (LDPC) code, but requires a license upgrade for Turbo coding.
- A majority of the EM-1 CubeSats will use the Iris transponder with Turbo coding.
- COTS S- and X-band Software Designed Radio (SDR) radios are available for use by CubeSats in lunar and L1/L2 orbit.
- NEN is capable, without any enhancements, of supporting CubeSats using COTS radios in lunar and L1/L2 orbit and current Cortex modems.
- Tradeoffs can be accomplished between CubeSat transmitting power and signal design, for instance Turbo vs LDPC coding, to achieve the desired downlink data rate.
- NEN station S-band uplink can be used today to support CubeSat commanding.
In addition to enhancement of ground stations, the NEN is focusing multiple initiatives to meet future needs of the CubeSat community

- NASA missions can obtain services on NASA-owned antennas for free
- NEN can broker commercial services for NASA missions
- NEN is investigating partnering with other agencies/universities to integrate new antennas into the NEN that may offer lower costs and greater coverage

NASA missions are required to pay for mission planning, integration, and testing (MPI&T), including compatibility and end-to-end testing

- NEN and GSFC Network Integration Management Office (NIMO) completed a Lean Six Sigma Project that explored ways to reduce MPI&T costs
- The project identified savings that could total 60%

NEN is also investigating ways to streamline NEN scheduling

- As the number of missions increase, so does complexity
- NEN is investigating ways to handle the increased load without increasing scheduling staff
Conclusion

- The NEN is ready today to support lunar and L1/L2 CubeSats
- Potential enhancements to Morehead State University and NEN ground stations will increase the science return from CubeSats and traditional non-CubeSat missions
- A relatively small investment in NEN ground station equipment could payoff over tens or hundreds of future missions
- Advancements in flight hardware will also increase data rates and science return
- The challenges for lunar and L1/L2 missions for communication and navigation are much greater than for LEO missions, but are not insurmountable
- NEN ground systems could benefit lunar and L1/L2 CubeSat missions, including the EM-1 CubeSat missions
BACKUP
EM-1 Secondary Payloads

1. PRIMARY MISSION
- Testing SLS and Orion
- Space Launch System (SLS)
- Lifts more than any existing launch vehicle

2. ORION STAGE ADAPTER
- Supports both primary mission and secondary payloads

3. SECONDARY PAYLOADS
- The ring that will connect the Orion spacecraft to NASA's SLS also has room for 13 hitchhiker payloads

SHOEBOX SIZE
- Payloads expand our knowledge for the journey to Mars

ORION SPACECRAFT
- Traveling thousands of miles beyond the Moon, where no crew vehicle has gone before

AVIONICS
- (Self-contained and independent from the primary mission) Send cubesats on their way

13 CUBESAT EXPLORERS
- Going to deep space where few cubesats have ever gone before

#RideOnSLS
Lunar Ice Cube Mission Design

% Deployment to Flyby, ~ 6 days
% Flyby to Lunar Encounter ~ 90 days
% Capture to Science Orbit ~ 280 days
Lunar IceCube Trajectory

Legend:
- Deployment
- Trans-lunar Injection
- Science Orbit
- Maneuvers
NEN Coverage During Lunar IceCube Deployment Phase #3

<table>
<thead>
<tr>
<th>Site</th>
<th>Max Range</th>
<th>Achievable Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>313,117 km</td>
<td>32 kbps</td>
</tr>
<tr>
<td>Australia</td>
<td>289,177 km</td>
<td>32 kbps</td>
</tr>
<tr>
<td>Wallops</td>
<td>312,716 km</td>
<td>16 kbps</td>
</tr>
<tr>
<td>Hart.</td>
<td>306,545 km</td>
<td>8 kbps</td>
</tr>
</tbody>
</table>

Note: Coverage times are based on line of site coverage and do not guarantee commitment of asset(s) for service. All NEN coverage times assume a 10 degree minimum elevation for RX, Tx, and Trk. DSN/MSU assumes a 6 degree minimum elevation for Rx and a 10 degree minimum elevation for Tx and Trk.
NEN Coverage During Lunar IceCube Deployment Phase #4

Event Start: 11 Oct 2018 03:07:24

<table>
<thead>
<tr>
<th>Site</th>
<th>Max Range</th>
<th>Achievable Rate</th>
<th>Coverage Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>378,162 km</td>
<td>32 kbps</td>
<td>3:18</td>
</tr>
<tr>
<td>Australia</td>
<td>385,862 km</td>
<td>32 kbps</td>
<td>10:00</td>
</tr>
<tr>
<td>Wallops</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hart.</td>
<td>381,111 km</td>
<td>4 kbps</td>
<td>5:24</td>
</tr>
<tr>
<td>NEN Sites</td>
<td>-</td>
<td>Dual</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single</td>
<td></td>
</tr>
</tbody>
</table>

Note: Coverage times are based on line of site coverage and do not guarantee commitment of asset(s) for service. All NEN coverage times assume a 10 degree minimum elevation for RX, Tx, and Trk. DSN/MSU assumes a 6 degree minimum elevation for RX and a 10 degree minimum elevation for Tx and Trk.
NEN Coverage During Lunar IceCube Outbound Lunar Flyby

<table>
<thead>
<tr>
<th>Site</th>
<th>Max Range</th>
<th>Achievable Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>401,505 km</td>
<td>32 kbps</td>
</tr>
<tr>
<td>Australia</td>
<td>398,211 km</td>
<td>32 kbps</td>
</tr>
<tr>
<td>Wallops</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hart.</td>
<td>400,463 km</td>
<td>4 kbps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Capability</th>
<th>Coverage Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>Rx/Tx/Tracking</td>
<td>1:25 Lunar Occultations</td>
</tr>
<tr>
<td>Australia</td>
<td>Rx/Tx/Tracking</td>
<td>3:47 Lunar Occultations</td>
</tr>
<tr>
<td>Wallops</td>
<td>Rx</td>
<td>1:14 Lunar Occultations</td>
</tr>
<tr>
<td>Hart.</td>
<td>Rx</td>
<td>1:14 Lunar Occultations</td>
</tr>
<tr>
<td>NEN Sites</td>
<td>Dual</td>
<td>Single</td>
</tr>
<tr>
<td>DSN/MSU (6°) Sites</td>
<td>Rx</td>
<td>Single</td>
</tr>
<tr>
<td>DSN/MSU (10°) Sites</td>
<td>Rx/Tx/Tracking</td>
<td>Single</td>
</tr>
</tbody>
</table>

Note: Coverage times are based on line of site coverage and do not guarantee commitment of asset(s) for service. All NEN coverage times assume a 10 degree minimum elevation for RX, Tx, and Trk. DSN/MSU assumes a 6 degree minimum elevation for Rx and a 10 degree minimum elevation for Tx and Trk.
NEN Coverage During Lunar IceCube Science Phase

No coverage during lunar occultation ~40 minutes

Maneuver 2 hours
NEN Coverage at Lunar Distances

NEN Three Station Architecture Providing 89% Lunar Coverage

NEN Four Station Architecture Providing 100% Lunar Coverage
Morehead State 21-m Station Performance Measure
Pre- and Post-Upgrade Targets

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Current Values</th>
<th>Post-Upgraded Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Band Frequency Range</td>
<td>7.0 – 7.8 GHz</td>
<td>7.0 – 8.5 GHz</td>
</tr>
<tr>
<td>LNA Temperature</td>
<td>70 K</td>
<td>< 20 K</td>
</tr>
<tr>
<td>System Temperature Tsys</td>
<td>215 K</td>
<td><100 K</td>
</tr>
<tr>
<td>Antenna Gain</td>
<td>62.0 dBi (@ 7.7 GHz)</td>
<td>62.7 dBi (@ 8.4 GHz)</td>
</tr>
<tr>
<td>System Noise Spectral Density</td>
<td>-175 dBm/Hz</td>
<td><-178 dBm/Hz</td>
</tr>
<tr>
<td>G/T at 5° Elevation</td>
<td>37.5 dBi/K</td>
<td>40.4 dBi/K</td>
</tr>
<tr>
<td>Time Standard</td>
<td>GPS (40-ns)</td>
<td>MASER 3.3 E-14 over 100 seconds/pse</td>
</tr>
<tr>
<td>SLE Compliant</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CCSDS Capable</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>