Hardware Demonstration:
Conducted Transients on Spacecraft Primary Power Lines

August 9, 2017

John McCloskey
NASA/GSFC
Chief EMC Engineer
John.C.McCloskey@nasa.gov

Jen Dimov
AS&D Inc. work performed for NASA/GSFC
EMC Engineer
Jennifer.Dimov@nasa.gov
Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>Conducted Emissions</td>
</tr>
<tr>
<td>CMCE</td>
<td>Common Mode Conducted Emissions</td>
</tr>
<tr>
<td>CS</td>
<td>Conducted Susceptibility</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>GEVS</td>
<td>General Environmental Verification Specification</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>LISN</td>
<td>Line Impedance Stabilization/Simulation Network</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
</tbody>
</table>
Introduction

- One of the sources of potential interference on spacecraft primary power lines is that of conducted transients resulting from equipment being switched on and off of the bus

- Susceptibility to such transients is addressed by the CS06 requirement of MIL-STD-461/462 prior to 1993

- This demonstration provides:
 - Basis for understanding of the sources of these transients
 - Analysis techniques for determining their worst-case characteristics (e.g. magnitude and duration)
 - Guidelines for minimizing their magnitudes and applying the requirement appropriately
Anatomy of Transients

- Normal transients on primary power bus result from equipment being switched on/off bus
 - Turn-on transient: negative going pulse
 - Turn-off transient: positive going pulse
- Characteristics of transient (magnitude, duration) determined by interaction of common source impedance with load impedance

TURN-ON TRANSIENT MODEL
(negative pulse)

TURN-OFF TRANSIENT MODEL
(positive pulse)
Power Distribution Harness Impedance Model

- Common distribution impedance generally dominated by distribution wiring
- Modeled as 2-wire transmission line
- Lumped model sufficient for most applications
- Line Impedance Stabilization/Simulation Network (LISN)
 - Used to represent wiring impedance
 - Based on lumped parameters; schematic usually looks like lumped model
 - Generally identified by inductance, e.g. 5 µH, 10 µH, 50 µH, etc.

\[Z_0 = \sqrt{\frac{L}{C}} \]

DISTRIBUTED MODEL

LUMPED MODEL (LISN)
Positive (+) and negative (-) bundles can be separated by 10s of cm

Typical distribution wiring length

- Unmanned spacecraft: ~1 meter, ~1 µH
- Larger platforms can have higher impedance buses; use LISNs ranging from 5 µH to 50 µH, depending on application

Typical parameters:
- \(R/l = 3 \, \text{mΩ/m} \)
- \(L/l = 1 \, \mu\text{H/m} \)
- \(C/l = 10 \, \text{pF/m} \)
- \(Z_0 = 350 \, \Omega \)
Power Distribution Harness Impedance Model (cont.)

MIL-STD-461 50 μH LISN

MIL-STD-461 5 μH LISN
Discrete Inductors from LISNs

Space Station LISN
Pair of 10 µH inductors
(11 µH as-measured)

Tegam 95300-50 LISN
50 µH
(51 µH as-measured)
For typical turn-on transients, inductance dominates common source impedance:

- Load capacitance is generally many orders of magnitude higher than the wiring capacitance.
- Wiring capacitance may generally be ignored.
- Common source impedance may be modelled as bulk inductance.

Diagram:

- Circuit diagram showing the relationship between input voltage V_I, output voltage V_O, inductance L, and transient current $I(t)$.
-标注说明：
 - When switch closes at $t = 0$, V_O will be pulled to 0 V and will rise as C_L charges.
 - The common source impedance is Z_0.
 - The load is represented by C_L and R_L.
 - Other loads are connected to the common distribution point V_D.
Demonstration 1a: Turn-On Transient w/ Discrete Inductor

ΔV_{peak} = \text{bus potential (pulled to 0 V)}

\tau = \sqrt{LC}

Good agreement betwixt measurements and simulations for discrete inductors

\tau \approx 10 \mu\text{sec}

\tau \approx 23 \mu\text{sec}
Demonstration 1b: Turn-On Transient with Added Capacitance at Distribution Point

- What happens when we add capacitance C_D at distribution point that is greater than load capacitance C_1…?
For typical turn-off transients, common source impedance may be modeled by bulk series inductance and bulk shunt capacitance

- Javor in [1] and [2] emphasized use of LISN in order to define a repeatable test method
- This study addresses the physical parameters of the harness, i.e. inductance and capacitance, in order to properly bound the properties of typical transients observed on GSFC platforms in order to assess the applicability of the CS06 positive transient.
Demonstration 2: Turn-Off Transient w/Discrete Inductors

\[\Delta V_{peak} = I_0 \sqrt{\frac{L}{C}} \]

\[\tau = \sqrt{LC} \]

\(\tau = \text{duration of impulsive spike due to opening switch} \)

Ringing occurs with period

\[T = 2\pi\tau \]

\(I_0 \) normalized to 1 A for all measurements and simulations
How about a real cable?

- Previous simulations and measurements were performed using discrete components
- We wanted to see if the lumped model accurately predicted the transients on actual cable
- **RG58 used as case study**
 - Coax never used for power wiring
 - Used because of well-defined and well-controlled impedance characteristics
- Used lengths of 16.8 m, 25.4 m, and 31.5 m

RG58 parameters:
- \(R/l = 51 \text{ m}\Omega/m \)
- \(L/l = 0.25 \mu\text{H/m} \)
- \(C/l = 100 \text{ pF/m} \)
Demonstration 3: Turn-Off Transient w/RG58 Coax

Bulk parameter model provides good agreement with measured results

\[Z_0 = \sqrt{(L/C)} = 50 \ \Omega \]

\[\Delta V_{peak} \text{ independent of pulse width} \]

\[\tau = \sqrt{(LC)} = 5 \ \text{nsec/m} \]

\[\text{Period} = 2\pi \sqrt{(LC)} = 31 \ \text{nsec/m} \]
Now that we have established confidence in our models, we can extrapolate them to predict typical transients on spacecraft.

Recall typical power wiring characteristics:
- (+) and (-) bundles separated by 10s of cm
- ~1 meter from battery to distribution point
- Parameters:
 - $R = 3 \, m\Omega$
 - $L = 1 \, \mu H$
 - $C = 10 \, pF$
 - $Z_0 = 350 \, \Omega$

We can plug these values into our models...
Turn-On Transient: Typical

Representative Turn-On Transient Circuit Model

Solid state switch

$\Delta V_{peak} = \text{bus potential}$
(pulled to 0 V; does not go negative)

$\sim 10 \mu\text{s}$
CS06 Negative (-) Pulse

- **Tailored CS06 (-) pulse good representation for turn-off transient**
 - 10 µsec pulse width
 - Magnitude
 - Tailor to equal line potential to pull bus to 0 V (no lower)
 - MIL-STD-461A default is lesser of 2x line voltage or 100 V
 - WILL pull the bus negative; not desired

Graph

- E = 2x line voltage or 100 V, whichever is less
- t = 10 µsec

To be presented by John McCloskey at the IEEE International Symposium on Electromagnetic Compatibility, National Harbor, MD, August 7-11, 2017
Turn-Off Transient: Typical (open circuit)

Representative Turn-Off Transient Circuit Model

\[\Delta V_{\text{peak}} > 200 \, \text{V} \]

for \(I_0 = 1 \, \text{A} \)

Pulse width \(\approx 10 \, \text{nsec} \)
Representative Turn-Off Transient Model With Filter in Power Distribution Unit (PDU) or equivalent

Typical Transient @ Distribution Point

$\Delta V \approx 0.1 \text{ V}$

Transient easily “snubbed” with additional capacitance at distribution point
CS06 Positive (+) Pulse

- CS06 (+) pulse NOT good representation for turn-on transient
 - Magnitude: tailorable; not really an issue
 - 10 µsec pulse width much longer than that of typical transients
 - Source impedance < 1 ohm; much lower than that of typical transients (not as easily “snubbed”)

\[E = 2 \times \text{line voltage or 100 V, whichever is less} \]
\[t = 10 \mu\text{sec} \]
Let’s Return to Our Turn-On Transient Model…

Representative Turn-On Transient Model With Filter in Power Distribution Unit (PDU) or equivalent

Transient at distribution point

$\Delta V < 1V$
Summary

- Turn-off transients do not pose significant problem on most spacecraft
 - Open-circuit potential can be high, but very short duration
 - Easily “snubbed” with modest amount of capacitance on load input filters or at distribution point
 - Eliminated with large filter capacitor at distribution point (if used)
 - CS06 positive-going pulse need not be applied
 - Even if open-circuit large magnitude, short duration turn-off transient were considered real, Javor showed in [3] that it poses no threat to input filter components

- On any spacecraft platform, an analysis of the power subsystem should be performed as early as possible in order to determine the worst-case magnitudes of turn-on and turn-off transients that may be observed at the point of distribution

- If these magnitudes are determined to be sufficiently benign, i.e. on the order of 3 V or less, then CS06 negative-going pulse need not be applied either

- Any concerns sufficiently covered by GEVS tailoring of CS101 and CS114 as below:
 - CS101, 1 Vrms (2.8 V peak-to-peak) from 30 Hz to 150 kHz
 - CS114, effective limit of 1 Vrms (20 mA into 50 Ω) from 150 kHz to 50 MHz
References

THANK YOU!
Backup
Proper testing of transients requires:

- Bounce-less, arc-less switch
- Repeatable rise times that are fast (short) compared to circuit response