Preliminary Analysis of Ground-Based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

Brad Sease
Satellite Operations Engineer
Omitron, Inc.
NASA GSFC Flight Dynamics Facility

August 24, 2017
The Wide Field Infrared Survey Telescope

- **WFIRST**
 - 2.4-meter space telescope, 100x field of view of Hubble
 - Planned launch in 2026 to Sun-Earth L₂
 - Studying dark matter, exo-planets, galaxy structure
 - Requires frequent momentum unloads

- **Ongoing navigational study**
 - Determine appropriate ground station configuration
 - Estimate achievable orbit solution accuracy
 - Quantify navigational impact of momentum unloading
Outline

Preliminary Analysis

– Ground station characterization

Covariance Analysis

– Preliminary tracking schedule study
– Launch to midcourse correction
– Post midcourse correction
– Orbit insertion

Simulated Operations

– Configuration
– Results
Ground Station Characterization

• **Metric Tracking Data Evaluation (MTDE)**
 – Ongoing effort in the Flight Dynamics Facility (FDF)
 – Quantifies quality of incoming tracking data
 – Orbit solutions for 38 spacecraft from 50 tracking sources
 – Reports stats for each pass

• **Studies use aggregate of MTDE data**
 – Mean & standard deviation of residuals over 1 year
 – Focused on “similar” Lagrange point orbits
WFIRST Planned Trajectory
Early Orbit Covariance Analysis

- **Linear covariance analysis in ODEAS**
 - Orbit Determination Error Analysis System
 - Propagates parameter uncertainties through orbit trajectory
 - Quantifies expected batch solution error

- **Intended as a preliminary study**
 - Initial pass at choosing required ground stations & schedule
 - First look at orbit solution accuracy

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Station ID</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldstone, California</td>
<td>DS24</td>
<td>DSN</td>
</tr>
<tr>
<td>Canberra, Australia</td>
<td>DS34</td>
<td>DSN</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>DS54</td>
<td>DSN</td>
</tr>
<tr>
<td>Santiago, Chile</td>
<td>AGOS</td>
<td>NEN</td>
</tr>
<tr>
<td>White Sands, New Mexico</td>
<td>WS1S</td>
<td>NEN</td>
</tr>
<tr>
<td>New Norcia Station, Australia</td>
<td>NN1D</td>
<td>ESA</td>
</tr>
</tbody>
</table>
Preliminary Tracking Schedule Study

- Position results from 21 days of mission orbit
 - Quantifies peak position solution error
 - Assume 1 mm/s momentum every 18 hours
 - Best-case error of 4-5 km
Preliminary Tracking Schedule Study

- Velocity results from 21 days of mission orbit
 - Quantifies peak velocity solution error in cm/s
 - Best-case error of 2-3 mm/s
Ground Station Configuration

• **Current planned schedule**
 – Includes Madrid (DS54), White Sands (WS1S), and Dongara, Australia (USPS)
 – Dongara geometrically similar to Canberra
 – Distinct schedules for early orbit and operational
Launch to Midcourse Correction

- **Orbit error at first maneuver (L + 25h)**
 - Quantifies error vs total tracking data span
 - Assumes constant coverage
 - < 10% error due to noise for convergence
 - **Conclusion:** At least 12 hours of data required
Post Midcourse Correction

- **Orbit error after first maneuver (L > 25h)**
 - Quantifies 1-week prediction error vs total tracking data span
 - Assumes constant coverage
 - Assumes no orbit knowledge after maneuver
 - **Conclusion:** At least 24 hours of tracking data required
• **Orbit error at L₂ orbit insertion**

 – Quantifies error vs total tracking data span
 – Assumes operational tracking schedule
 – **Conclusion:** At least 21 days of tracking data required
Mission Orbit Simulated Operations

- **Filter-based simulation to mirror operations**
 - Once-daily orbit solutions
 - One year simulation span
 - Accuracy measured through ephemeris compares

- **Filter configuration similar to previous study**
 - Assume mission orbit tracking schedule
 - Momentum unloads not modeled in filter
 - Stationkeeping every 21 days
 - Three momentum unloading configurations: 18, 40, 200 hours
Results

• Results for first year on mission orbit
 – Quantifies error vs orbit prediction span
 – **Conclusion:** Without modeling, more frequent unloads are desirable
 – **Conclusion:** Expected 1-day prediction accuracy of 3-4 km and 1 cm/s
 – Stationkeeping maneuvers dependent on error
Conclusions

• **Studies are ongoing**
 – This work represents current understanding
 – Spacecraft parameters remain in flux
 – Mission requirements in development

• **Covariance study captures early-orbit behavior**
 – Around MCC-1: 12-24 hour span required
 – Prior to orbit insertion: 21 day span required
 – Mission orbit: at least two hours of tracking/day

• **Filter study captures mission-orbit behavior**
 – Expect 3-4 km, 1 cm/s error for 1-day prediction
 – Without modeling, more frequent momentum unloads → lower impact