Bimodal SLD Ice Accretion on a NACA 0012 Airfoil Model

Mark Potapczuk
NASA John H. Glenn Research Center, Cleveland, Ohio, 44135 USA

Jen-Ching Tsao
Ohio Aerospace Institute, Cleveland, Ohio, 44135 USA

Laura King-Steen
HX5 Sierra, Cleveland, Ohio, 44135 USA

Presented at
9th AIAA Atmospheric and Space Environments Conference
Denver, CO
June 5-9, 2017
Outline

• Objectives
• Approach
• Background
 ➢ Facility
 ➢ Cloud Conditions
 ➢ Model
 ➢ Test Procedures
 ➢ Test Matrix
• Results
• Concluding Remarks
• Acknowledgements
Objectives

1. Document the Ice Shapes Produced using the IRT Bimodal Spray Conditions

2. Compare with Ice Shapes Produced using the Single Nozzle Array (Monomodal) for Equivalent Cloud Conditions
 - Use previously produced ice shapes as reference conditions
Approach

1. Evaluate the IRT Bimodal Spray Ice Shapes
 - At 130, 150, 200 & 250 knots
 - At $\alpha = 0^\circ, 4^\circ$

2. Compare with Monomodal Spray Ice Shapes at
 - 2 Ice Shape Repeatability Conditions
 - 2 Ice Shape Condition from Scaling Work
2016 IRT Bimodal Spray

Pair = 15 psig
- **Man1 (Mod1) deltaP = 80 psid**
 - MVD = 39.2 um
 - minLWC (@250 kts)* = 0.67 g/m³
- **Man2 (Std) deltaP = 7 psid**
 - MVD = 17.1 um
 - minLWC (@250 kts)* = 0.78 g/m³
- **Combined:**
 - MVD = 20.8 um
 - minLWC (@250 kts)* = 1.45 g/m³

How good of a match is it to FZDZ, MVD<40?
- The normalized cumulative LWC in each of the measured bins was within 10% of what the normalized cumulative LWC is for FZDZ, MVD<40 (for each corresponding bin)

LWC values based on IRT LWC calibration curves
Selected IRT Mod1 Spray Condition

Monomodal Distribution

Normalized Cumulative Volume

Drop Diameter, μm

IRT Mod1, Pair=15, DelP=30
FZDZ, MVD < 40 μm
2016 IRT Bimodal & Monomodal Distributions

- **FZDZ, MVD<40**
 - FAA App O distribution
 - MVD=20 µm
 - LWC between 0.29 and 0.44 g/m³

- **Bimodal**
 - Mod1 + Std nozzles
 - Pair = 15 psig
 - Mod1 ΔP = 80 psid
 - Standard ΔP = 7 psid
 - Combined MVD = 20.8 µm
 - Combined minLWC (@250 kts) = 1.45 g/m³

- **Monomodal**
 - Mod1 nozzles
 - Pair=15 psig
 - ΔP=30 psid
 - MVD=19.3 µm
 - minLWC (@250 kts) = 0.37 g/m³

- Both IRT distributions were measured by spraying only even-numbered spray bars, as is typical for drop-sizing calibrations in Appendix C conditions in order to avoid coincidence error
- LWC values are based on IRT calibration curves
Test Model

21-in chord NACA 0012 model, full span
Test Procedures

- The tunnel temperature and velocity conditions were set.
- The spray bar air and water pressures were set.
- The tunnel was run at the set temperature and velocity conditions and the thermocouples on the model were monitored.
- When the model temperature matched the tunnel static air temperature, the model was considered to be sufficiently cold to initiate the spray.
- The spray was initiated and lasted for the prescribed time for the icing condition of that run.
- After the spray was stopped and the tunnel velocity was reduced to idle conditions, personnel entered the test section and performed the following tasks.
- Photographs of the ice on the model were taken from several pre-set locations around the model.
- A laser scanner system was used to obtain geometric data of the ice shape using the method described by Lee, et al.*
- Once the ice shapes were scanned, a 12 inch spanwise section of the ice shape was removed from the surface into a collection tray and weighed in order to obtain the accumulated mass.
- Following the removal of the mass, the model surface was cleaned of all remaining ice and prepared for the next test run.

Test Matrix

5 proposed reference conditions

Test Conditions

<table>
<thead>
<tr>
<th>Case</th>
<th>Reference Condition</th>
<th>α</th>
<th>V (kts)</th>
<th>MVD (m)</th>
<th>LWC (g/m³)</th>
<th>T<sub>t</sub> (°C)</th>
<th>T<sub>s</sub> (°C)</th>
<th>Time (min)</th>
<th>n<sub>0</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice Shape Repeatability Run 3</td>
<td>1</td>
<td>4</td>
<td>200</td>
<td>20</td>
<td>0.55</td>
<td>-5.6</td>
<td>-10.8</td>
<td>7</td>
<td>0.52</td>
</tr>
<tr>
<td>Ice Shape Repeatability Run 23</td>
<td>2</td>
<td>4</td>
<td>130</td>
<td>22</td>
<td>1</td>
<td>-5.6</td>
<td>-7.8</td>
<td>6</td>
<td>0.34</td>
</tr>
<tr>
<td>5-15-06/Run 14</td>
<td>3</td>
<td>0</td>
<td>150</td>
<td>30</td>
<td>1.34</td>
<td>-12.5</td>
<td>-15.5</td>
<td>5.5</td>
<td>0.49</td>
</tr>
<tr>
<td>5-15-06/Run 15</td>
<td>4</td>
<td>0</td>
<td>100</td>
<td>30</td>
<td>1.75</td>
<td>-13.5</td>
<td>-14.8</td>
<td>6.7</td>
<td>0.5</td>
</tr>
<tr>
<td>3-28-05/Run 6</td>
<td>5</td>
<td>0</td>
<td>250</td>
<td>26.8</td>
<td>0.56</td>
<td>-5.2</td>
<td>-13.4</td>
<td>8.5</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Note: For scaling, two selected spray clouds are considered.
Test Matrix

Monomodal and bimodal test conditions based upon scaling of reference conditions.

<table>
<thead>
<tr>
<th>Run #</th>
<th>Reference Condition</th>
<th>α</th>
<th>V (kts)</th>
<th>MVD (m)</th>
<th>LWC (g/m³)</th>
<th>Tₜ (°C)</th>
<th>Tₛ (°C)</th>
<th>Time (min)</th>
<th>n₀</th>
<th>Mod-1 pₐᵢᵣ, psig</th>
<th>Mod-1 Dₚ, psid</th>
<th>Std pₐᵢᵣ, psig</th>
<th>Std Dₚ, psid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE2716</td>
<td>5.b</td>
<td>0</td>
<td>250</td>
<td>19.3</td>
<td>0.37</td>
<td>-2.3</td>
<td>-10.5</td>
<td>14</td>
<td>0.46</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>AE2717</td>
<td>2.b</td>
<td>4</td>
<td>130</td>
<td>19.3</td>
<td>0.55</td>
<td>-2.8</td>
<td>-5</td>
<td>11.5</td>
<td>0.34</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>AE2718</td>
<td>1.b</td>
<td>4</td>
<td>200</td>
<td>19.3</td>
<td>0.42</td>
<td>-3.9</td>
<td>-9.2</td>
<td>9.3</td>
<td>0.52</td>
<td>15</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE2719</td>
<td>2.a</td>
<td>4</td>
<td>130</td>
<td>20.8</td>
<td>2.15</td>
<td>-9.9</td>
<td>-12.1</td>
<td>2.9</td>
<td>0.34</td>
<td>15</td>
<td>80</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>AE2720</td>
<td>5.a</td>
<td>0</td>
<td>250</td>
<td>20.8</td>
<td>1.45</td>
<td>-11.9</td>
<td>-20.2</td>
<td>3.5</td>
<td>0.46</td>
<td>15</td>
<td>80</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>AE2721</td>
<td>1.a</td>
<td>4</td>
<td>200</td>
<td>20.8</td>
<td>1.64</td>
<td>-15.2</td>
<td>-20.5</td>
<td>2.3</td>
<td>0.52</td>
<td>15</td>
<td>80</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>AE2738</td>
<td>5.b</td>
<td>0</td>
<td>250</td>
<td>19.3</td>
<td>0.37</td>
<td>-2.3</td>
<td>-10.5</td>
<td>14</td>
<td>0.46</td>
<td>15</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE2739</td>
<td>2.b</td>
<td>4</td>
<td>130</td>
<td>19.3</td>
<td>0.55</td>
<td>-2.8</td>
<td>-5</td>
<td>11.5</td>
<td>0.34</td>
<td>15</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE2740</td>
<td>3.b</td>
<td>0</td>
<td>150</td>
<td>19.3</td>
<td>0.5</td>
<td>-4.2</td>
<td>-7.2</td>
<td>17</td>
<td>0.49</td>
<td>15</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE2741</td>
<td>2.a</td>
<td>4</td>
<td>130</td>
<td>20.8</td>
<td>2.15</td>
<td>-9.9</td>
<td>-12.1</td>
<td>2.9</td>
<td>0.34</td>
<td>15</td>
<td>80</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>AE2742</td>
<td>3.a</td>
<td>0</td>
<td>150</td>
<td>20.8</td>
<td>1.96</td>
<td>-14.9</td>
<td>-17.9</td>
<td>4.2</td>
<td>0.49</td>
<td>15</td>
<td>80</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: a - Bimodal spray; b - Monomodal spray
Olsen Method for Scaling LWC

1. \(c_s = c_r \)
2. \(V_s = V_r \)
3. \(MVD_s = MVD_r \)
4. Choose a \(LWC_s \)
5. Calculate the scale temperature \(T_{st,s} \) from \(n_{0,s} = n_{0,r} \)
6. Calculate the scale total temperature, \(T_{tot,s} \). If \(T_{tot,s} \) is greater than -2°C, repeat steps 4, 5, and 6 with a larger \(LWC_s \)
7. Calculate the scale accretion time from \(A_{c,s} = A_{c,r} \), which leads to \(t_s = (LWC_r \times t_r)/LWC_s \)
Sample Photograph and Scan
Test Run #AE2741
Test Results
Quantitative Data

Mass and volume measurements for the ice shapes resulting from the scaled monomodal and bimodal distribution icing conditions from this test program.

<table>
<thead>
<tr>
<th>Reference Condition</th>
<th>Mass bimodal (g)</th>
<th>Mass monomodal (g)</th>
<th>Δm_i (g)</th>
<th>Δm_i (%)</th>
<th>Volume bimodal (in^3)</th>
<th>Volume monomodal (in^3)</th>
<th>ΔVol. (in^3)</th>
<th>ΔVol. (%)</th>
<th>ρ_{eff,b} (g/in^3)</th>
<th>ρ_{eff,m} (g/in^3)</th>
<th>Δρ_{eff} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>163.1</td>
<td>131.2</td>
<td>31.9</td>
<td>24%</td>
<td>13.67</td>
<td>12.39</td>
<td>1.28</td>
<td>10.3%</td>
<td>11.9</td>
<td>10.6</td>
<td>12.7%</td>
</tr>
<tr>
<td>2</td>
<td>151.9</td>
<td>137.9</td>
<td>14</td>
<td>10%</td>
<td>14.3</td>
<td>11.28</td>
<td>3.02</td>
<td>26.8%</td>
<td>10.6</td>
<td>12.2</td>
<td>-13.1%</td>
</tr>
<tr>
<td>3</td>
<td>207.1</td>
<td>188</td>
<td>19.1</td>
<td>10%</td>
<td>18.46</td>
<td>15.49</td>
<td>2.97</td>
<td>19.2%</td>
<td>11.2</td>
<td>12.1</td>
<td>-7.6%</td>
</tr>
<tr>
<td>5</td>
<td>228.5</td>
<td>157.8</td>
<td>70.7</td>
<td>45%</td>
<td>19.52</td>
<td>13.56</td>
<td>5.96</td>
<td>44.0%</td>
<td>11.7</td>
<td>11.6</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Note: Density of ice at 0 °C is 0.9167 g/cm^3 = 15.02 g/in^3
Ice Shape Comparisons to Reference Shapes
Reference Condition 1, V= 200 knots

MVD$_1$ = 20 μm, LWC$_1$ = 0.55 g/m3, t$_1$ = 7 min
MVD$_{1a}$ = 20.8 μm, LWC$_{1a}$ = 1.64 g/m3, t$_{1a}$ = 2.3 min

MVD$_1$ = 20 μm, LWC$_1$ = 0.55 g/m3, t$_1$ = 7 min
MVD$_{1b}$ = 19.3 μm, LWC$_{1b}$ = 0.42 g/m3, t$_{1b}$ = 9.3 min

Bimodal Distribution (a) Monomodal Distribution (b)
Ice Shape Comparisons to Reference Shapes
Reference Condition 2, \(V = 130 \) knots

MVD\(_2\) = 22 \(\mu \)m, LWC\(_2\) = 1.00 g/m\(^3\), \(t_2 \) = 6 min
MVD\(_{2a}\) = 20.8 \(\mu \)m, LWC\(_{2a}\) = 2.15 g/m\(^3\), \(t_{2a} \) = 2.9 min

MVD\(_{2b}\) = 19.3 \(\mu \)m, LWC\(_{2b}\) = 0.55 g/m\(^3\), \(t_{2b} \) = 11.5 min

Bimodal Distribution (a)
Monomodal Distribution (b)
Ice Shape Comparisons to Reference Shapes
Reference Condition 3, V = 150 knots

MVD$_3$ = 30 µm, LWC$_3$ = 1.34 g/m3, t$_3$ = 5.5 min
MVD$_{3a}$ = 20.8 µm, LWC$_{3a}$ = 1.96 g/m3, t$_{3a}$ = 4.2 min

Bimodal Distribution (a)

MVD$_3$ = 30 µm, LWC$_3$ = 1.34 g/m3, t$_3$ = 5.5 min
MVD$_{3b}$ = 19.3 µm, LWC$_{3b}$ = 0.5 g/m3, t$_{3b}$ = 17 min

Monomodal Distribution (b)
Ice Shape Comparisons to Reference Shapes
Reference Condition 5, V = 250 knots

MVD$_5$ = 26.8 μm, LWC$_5$ = 0.56 g/m3, t_5 = 8.5 min
MVD$_{5a}$ = 20.8 μm, LWC$_{5a}$ = 1.45 g/m3, t_{5a} = 3.5 min

MVD$_{5b}$ = 19.3 μm, LWC$_{5b}$ = 0.37 g/m3, t_{5b} = 14 min

Bimodal Distribution (a) Monomodal Distribution (b)
Bimodal Cloud Effects on Ice Shapes

- Icing limits are further aft

Ref. 1
- 24% more ice mass
- 10% more volume

Ref. 2
- 10% more ice mass
- 27% more volume

Ref. 3
- 10% more ice mass
- 19% more volume

Ref. 5
- 45% more ice mass
- 44% more volume

monomodal

bimodal
Ice Shape Repeatability
Reference Condition 2

Bimodal Distribution (a) Monomodal Distribution (b)

8.4% ice mass difference
13.6% volume difference

3.6% ice mass difference
5.9% volume difference
Normalized Ice Mass Difference

\[M_w = LWC \cdot V \cdot t \cdot A_p \]

\[\Delta \tilde{m}_i = \Delta m_i / M_w \]

\[A_p = \text{projected area} \]

\[\Delta m_i = \text{measured mass difference} \]
Concluding Remarks

• Bimodal spray ice shapes were created based upon the simultaneous spray process of Steen and Ide

• Test conditions, using monomodal and bimodal spray distributions, were developed for comparison to previously tested and recorded conditions

• For conditions that were the nominally the same, using the Olsen scaling method, the bimodal ice shapes:
 ✓ Had a larger mass
 ✓ Had a greater volume
 ✓ Had icing limits further aft on the airfoil

• The ice mass difference seemed to increase with increasing velocity

• These differences seemed to be somewhat larger than repeatability

• More Evaluation Tests Recommended
Acknowledgements

The authors would like to thank Quentin Schwinn and Jordan Salkin of Alcyon Technical Services (ATS) JV, LLC for their invaluable support in ice shape scanning and post-processing.

The authors would also like to thank the IRT staff for their support in advocating for this work and during the test campaign.

This work was supported through the Aeronautics Evaluation and Test Capabilities (AETC) Project.