Time-domain astronomy with *Fermi* GBM in the Multi-Messenger Era

Colleen A. Wilson-Hodge (NASA/MSFC)
Fermi GBM PI
on behalf of the *Fermi* GBM team

AAS HEAD Sun Valley, ID, Aug 23, 2017
Fermi Gamma-ray Space Telescope

http://gammaray.nsstc.nasa.gov/

GBM:
- FOV >8sr
- Whole sky every ~90min

Data products:
- CTIME (continuous high time resolution)
 - 256 / 64 ms, 8 energy channels
- CSPEC (continuous high spectral resolution)
 - 4096 / 1024 ms, 128 energy channels
- TTE / CTTE (time tagged events)
 - 2μs, 128 energy channels

Triggering algorithms:
- In-orbit count rate increase in 2+ NaI detectors above adjustable threshold above background
 - 10 timescales — 16ms up to 4.096s
 - 4 energy ranges — [50-300], [25-50], >100, >300 keV
- Ground-based offline search for rate increase
- Earth occultation
- Pulsar phase folding
Fermi GBM Science

Galactic — pulsars, magnetars

Gamma-Ray Bursts

Terrestrial Gamma-ray Flashes

Colleen A. Wilson-HODGE

AAS HEAD 2017 Sun Valley
Gamma-ray Bursts

- Over 2000 GRBs have been detected since launching in 2008.
 - 200 long GRBs / year -> massive star collapse.
 - 40 short GRBs / year -> compact merger event.
 - 13% seen by Swift.
 - 52% within *Fermi* LAT FOV, 6% detected.
Monitoring by Earth Occultation technique

https://gammaray.nsstc.nasa.gov/gbm/science/earth_occ.html

• 200+ sources are monitored from X-ray binaries to Active Galactic Nuclei.
 • 102 detections, 9 at >100 keV.
• Crab Nebula flux variations over the past decade, averaging 10% and up to 40% at 300—500 keV (Wilson-Hodge et al. 2011).
• Changes in shock acceleration or nebular magnetic field?
Offline GRB search

- **Untargeted** search in the Continuous Time Tagged Events (CTTE) data.
 - 18 timescales: 64ms to 32 s
 - Four energy ranges
- GCN now available, more info at https://gcn.gsfc.nasa.gov/fermi_gbm_subthreshold.html
 - Currently short timescale pipeline is released, long (2.8+s) pipeline is in progress.
 - Expected rate is ~70/month (during periods of Cyg X-1 activity, it may increase by 4x).
 - Current time delays range from 0.5 to 6 hours due to ground processing and data downlink.
 - Location uncertainties are in the range of 10 to 40 deg (68% containment radius).
- List of candidates from older data (2013 and on) are available. http://gammaray.nsstc.nasa.gov/gbm/science/sgrb_search.html
Offline GRB search

- **Targeted** search in the Continuous Time Tagged Events (CTTE) data. (Blackburn et al. 2015, Goldstein et al. arXiv:1612:02395)
 - Looks for coherent signals in all detectors given an input time and optional skymap.
 - Calculate likelihood ratio of source and background.
 - Search +/- 30 seconds of input event time.
 - Sliding timescales from 0.256s to 8s (capable down to 0.064s) with a factor of 4 phase shift.
 - 3 source spectral templates using Band function: soft, normal, and hard.
Follow-up to Gravitational Wave Event GW150914

- Untriggered sub-threshold signal 0.4s after LIGO trigger.
- Consistent with a low-fluence short GRB coming from behind Fermi.
- Poorly localized but consistent with LIGO localization.
- 0.2% post-trials probability in statistical fluctuation.
Follow-up to Gravitational Wave Events

- 3σ flux upper limit to GW151226 at 10—1000 keV, calculated from count rates +/- 30s of the GW trigger time.
 - Spectrum assumed to be cutoff power-law with $E_{\text{peak}} = 566$ keV and photon index of 0.42
- Based on provided location probability map, we can calculate upper bounds on impulsive gamma-ray emission.
Follow-up to IceCube neutrino Events

- Utilizes all search methods:
 - On-board triggers.
 - Targeted search using event time.
 - Untargeted search within the hour.
 - Earth occultation technique.
- Good follow-up observation for IceCube-161103, upper limit published in GCN 20127.
- Other followup with limited GBM coverage: IceCube-170321A (GCN 20932).
Summary

• GBM continues to be prolific in detecting GRBs and monitoring pulsars and Galactic transients.
• GCN notice of subthreshold GRB candidate events are now available.
• Continued development of offline data searches for joint detection of astrophysical transients with neutrinos and gravitational waves.
Back-up slides
Untargeted search algorithms:
• Initially developed for Terrestrial Gamma-ray Flash search.
 • more details at http://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf
• Using Continuous Time Tagged Events (CTTE) — 2µs time resolution with 128 energy channels.
• 2 detectors: 2.5σ and another 1.25σ above background.
 • one-day probability threshold <1e-6 for release.
 • Unfavorable geometry of the two above-threshold detectors are eliminated.
• 18 timescales — 0.064s to 32s.
• 4 energy ranges (optimized on GBM-triggered weak sGRBs).
 • 27—539 keV
 • 50—539 keV
 • 102—539 keV
 • 102—985 keV
• 318 short, hard candidates found in 46 months.
 → ~80 per year, twice the rate of GBM triggered short GRBs.
GBM Candidate Event

- 2014-06-06 10:58:13.625
- **Swift GRB 140606A**
- Found in 0.25s time binning
- 93 - 494 keV energy range
- $P=1.91\times10^{-16}$

INTEGRAL ACS lightcurve

ACS native

time bin

GBM timescale

![Graphs showing lightcurves with significance levels](image)
False Alarm Probability Calculation

False Alarm Rate (FAR) = 27 hard events in 218821.1s of GBM live time, factor of 3 for spectra searched, 90% confidence.

\[P = 2 \times (4.79 \times 10^{-4} \text{ Hz}) \times 0.4 \text{ s} \times (1 + \ln(30 \text{ s} / 0.256 \text{ s})) = 0.0022 \]

Offset in time in either direction.

Time offset between GW and GBM event start.

Effective trials factor for bins/durations searched.