Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

Mark Stewart
VPL at NASA Glenn Research Center
Outline

• Issues with evaporation/condensation at interface
• Temperature jumps at an interface—sharp gradients
• Interface physics: mass and energy transfer
• Model equation: solved two ways
• Numerical methods: subgrid model & coupling
• Results: practical demonstration of method
K-Site: Slow Self-Pressurization Captures Pressure Evolution
CNES Low-g Slosh: Heavy Boiling Phase with Condensation and Transit

00:26 in data

T=96.75 s in CNES_5C_7
CNES Low-g Slosh: Pressure Evolution

\[\sigma_{\text{evap}} = \sigma_{\text{cond}} = 1 \times 10^{-4} \]

\[\sigma_{\text{evap}} = \sigma_{\text{cond}} = 2 \times 10^{-4} \]
Temperature “Jumps” at the Interface

\[W = - \int p \, dV \]

Work done on the vapor phase

Pressurization caused by:
- Pressurant
- Boiling liquid
- Clouds rise/fall
- Temperature gradients

Temperature gradient established
Pressurization of a Compressible Gas

<table>
<thead>
<tr>
<th>Latent Heat ΔH_{vap} (J/kg)</th>
<th>T_{sat} (K)</th>
<th>$\Delta T_{\text{compress}}$ 1->2 atm (K)</th>
<th>Vapor $\Delta H_{\text{vap}}/C_p$ (K)</th>
<th>Liquid $\Delta H_{\text{vap}}/C_p$ (K)</th>
<th>Vapor α</th>
<th>Liquid α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium 20,752.</td>
<td>4.2304</td>
<td>1.342</td>
<td>2.3</td>
<td>3.9</td>
<td>5.95E-05</td>
<td>2.82E-05</td>
</tr>
<tr>
<td>Methane 510,830.</td>
<td>111.67</td>
<td>20.433</td>
<td>230.3</td>
<td>146.7</td>
<td>2.88E-03</td>
<td>1.25E-04</td>
</tr>
<tr>
<td>Nitrogen 199,178.</td>
<td>77.355</td>
<td>16.942</td>
<td>177.2</td>
<td>97.6</td>
<td>1.45E-03</td>
<td>8.86E-05</td>
</tr>
<tr>
<td>Oxygen 213,050.</td>
<td>90.188</td>
<td>19.752</td>
<td>219.5</td>
<td>125.4</td>
<td>1.93E-03</td>
<td>7.82E-05</td>
</tr>
<tr>
<td>Parahydrogen 445,440.</td>
<td>20.277</td>
<td>4.441</td>
<td>36.4</td>
<td>46.1</td>
<td>1.04E-03</td>
<td>2.81E-06</td>
</tr>
<tr>
<td>Water 2,256,440.</td>
<td>373.12</td>
<td>70.019</td>
<td>1084.9</td>
<td>535.3</td>
<td>2.02E-02</td>
<td>1.68E-04</td>
</tr>
</tbody>
</table>
Energy/Heat Equation

\[\rho C_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial x^2} = \dot{q}_{\text{interface}} + \dot{q}_{\text{vap}} \]

Negligible:
- Fluid motion
- Temperature variation in interface plane

\[\alpha = \frac{k}{C_p \rho} \]
Heat Equation: Series of Exact Solutions

\[\rho C_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial x^2} = \dot{q}_{\text{interface}} + \dot{q}_{\text{vap}} \]

\[T^{\text{vap}}(x, t) = T_\infty^{\text{vap}}(t) + \sum_{j=1}^{t \leq t} \frac{Q_j^{\text{vap}}}{(4\pi \alpha_{\text{vap}}(t-t_j))^{1/2}} e^{-x^2/(4\alpha_{\text{vap}}(t-t_j))}, \quad x \geq 0 \]

\[T^{\text{liq}}(x, t) = T_{-\infty}^{\text{liq}} + \sum_{j=1}^{t \leq t} \frac{Q_j^{\text{liq}}}{(4\pi \alpha_{\text{liq}}(t-t_j))^{1/2}} e^{-x^2/(4\alpha_{\text{liq}}(t-t_j))}, \quad x \leq 0 \]

\(T_{-\infty}^{\text{liq}} \), is assumed constant

\(T_\infty^{\text{vap}}(t) \), from isentropic compression

\[\frac{T_1}{T_0} = e^{\frac{dS}{C_p} \left(\frac{V_0}{V_1} \right)^{\gamma-1}} \]

\[(-k_{\text{liq}} \frac{dT}{dx})_{\text{interface-liq}} - (-k_{\text{vap}} \frac{dT}{dx})_{\text{interface-vap}} = \dot{q}_{\text{flux}} = \dot{m}_{\text{flux}} (p_{\text{interface}}, T_{\text{interface}}) \Delta H_{\text{vap}}(T_{\text{interface}}) \]
Heat Equation: Numerical Solutions

\[\rho C_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial x^2} = \dot{q}_{\text{interface}} + \dot{q}_{\text{vap}} \]

\[D(T_i^+ - T_i^-) - (T_{i+1}^+ - T_i^+) + (T_i^+ - T_{i-1}^+) + \frac{(\omega - 1)}{\omega} (T_{i+1}^- - T_i^-) - \frac{(\omega - 1)}{\omega} (T_i^- - T_{i-1}^-) = \frac{\Delta x^2}{\omega k} \dot{q}_{\text{vap}} \]

\[D = \frac{\rho C_p \Delta x^2}{\omega k \Delta t} \]

Solved as a tridiagonal matrix

\(T_{\text{liq}}^{-\infty} \), is assumed constant

\(T_{\text{vap}}^{\infty}(t) \), from isentropic compression

\[\frac{T_1}{T_0} = e^{\frac{dS}{C_p}} \left(\frac{V_0}{V_1} \right)^{\gamma - 1} \]

\[\left(-k_{\text{liq}} \frac{dT}{dx} \right)_{\text{interface - liq}} - \left(-k_{\text{vap}} \frac{dT}{dx} \right)_{\text{interface - vap}} = \dot{q}_{\text{flux}} = \dot{m}_{\text{flux}} (p_{\text{interface}}, T_{\text{interface}}) \Delta H_{\text{vap}}(T_{\text{interface}}) \]
Temperature “Jumps” at the Interface

\[W = - \int p \, dV \]

\(\Delta T \) due to work done on vapor

Incompressible Liquid

Compressible Vapor

Distance From Interface (mm)
Intermission - Mid-Review

• Thermal Layers: role of heat near the interface
• Exact & numerical solutions: verification
• Evaporation/Condensation rates:
 – Temperature gradients at interface, O(1 mm)
 – Heat transfer near interface is important--if not rate limiting
• From Physics, application to CFD simulation
CFD: Subgrid Model for Interface

• Fine grid needed to resolve thermal layers ~1mm
• Interface can move and curve
 – grid generation nightmare, even unstructured, adaptive grid
• Subgrid model moves with the interface
• Solves the 1-D heat equation normal to interface
• Four couplings between subgrid model and Fluent
• Energy & mass source terms in liquid/vapor equations
Coupling Between Subgrid Model and Simulation

1-D Heat Equation

Region \mathcal{R}

Coupling 1:

\begin{align*}
 x_{\text{interface}} &= \frac{\sum_{\mathcal{R}} x \varphi (1 - \varphi)}{\sum_{\mathcal{R}} \varphi (1 - \varphi)} \\
 y_{\text{interface}} &= \frac{\sum_{\mathcal{R}} y \varphi (1 - \varphi)}{\sum_{\mathcal{R}} \varphi (1 - \varphi)}
\end{align*}

Coupling 2:

\begin{align*}
 p_{\text{interface}} &= \frac{\int_{\mathcal{R}} p \varphi_{\text{vap}} dV}{\int_{\mathcal{R}} \varphi_{\text{vap}} dV}
\end{align*}

Coupling 3: Fluent Source Term (liquid & vapor)

\[\dot{m}_{\text{interface}} \]

Coupling 4: Fluent Source Term (liquid & vapor)

\[\dot{q}_{\text{interface}} \]

Mass and Energy are conserved
Must be careful about sizing Fluent source terms!!
EDU Tank

- 2219 Aluminum; Volume 4.34 m3; I.D. 1.70 m; I. H. 2.33 m
- 1.25” SOFI, 60 layers MLI; 2.54 mm wall thickness
EDU CAD Geometry

- Axisymmetric geometry/grid
EDU CAD Geometry

- Diffuser Supply Line
- Tank Penetration
- Bolted Joint
- Unsubmerged Diffuser
- Tank Wall
- Tank Axis
Phase A Test Data

- Test HT-15, 16 on day 3 of Phase A testing
- 90% Fill level
- Pressurant gas at 290 K through the unsubmerged diffuser supply line
- Small drain flow, less than 1% of volume
$Q_{\text{vapor}} = -4.04 \text{ W/m}^2$; $Q_{\text{liquid}} = -54.03 \text{ W/m}^2$;
Condense Heat Flux 52.7 W/m^2; Condense Mass Rate $-1.13 \times 10^{-4} \text{ kg/m}^2\text{-s}$;
Results

- Good measure of condensation rate?
- For duration, pressurant inflow to condensation is between 1.5:-1 and 2:-1
- After 123 s, pressurant declines
- Assuming pressure release after 131 s
Conclusions

• Proof of concept for improved interface mass & energy transfer
• Accommodation coefficient of 1.0
• Extension to curved surfaces, multiple surfaces
• Need to examine other problems in the context of this result
Mass & Heat Equations

\[\rho C_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial x^2} = \dot{q}_{\text{interface}} + \dot{q}_{\text{vap}} \]

\[\dot{m}_{\text{flux}} (p_{\text{interface}}, T_{\text{interface}}) = \frac{2}{2 - \sigma_{\text{cond}}} \frac{MW}{2\pi R_u} \left(\sigma_{\text{evap}} \frac{p_{\text{sat}}(T_{\text{liq}})}{\sqrt{T_{\text{liq}}}} - \sigma_{\text{cond}} \frac{p_{\text{vap}}}{\sqrt{T_{\text{vap}}}} \right) \]

\[\dot{q}_{\text{flux}} = \dot{m}_{\text{flux}} (p_{\text{interface}}, T_{\text{interface}}) \Delta H_{\text{vap}} (T_{\text{Interface}}) \]

\[\frac{T_1}{T_0} = e^{\frac{dS}{C_p}} \left(\frac{V_0}{V_1} \right)^{\gamma - 1} = e^{\frac{dS}{C_p}} \left(\frac{p_1}{p_0} \right)^{1 - \frac{1}{\gamma}} \]