Impact of Wake Dispersion on Axial Compressor Performance

Chunill Hah
NASA Glenn Research Center,
MS 5-10, Cleveland, Ohio
Background

- Needs to advance current understanding of flow physics in modern highly-loaded compact compressor stages.
- Needs to develop prediction tools based on higher-fidelity CFD tools (DES, LES, DNS, etc.).
Changes in multi-stage compressor design

Less spacing between blade rows.
Higher loading per blade rows.
Main aerodynamic performance effects of closely-coupled compressor blade rows

1. Upstream influence of pressure field of the downstream blade row.
2. Effects of wake dispersion on the downstream blade row.

Ps

Pt
Earlier investigations of the wake dispersion on compressor performance

L. H. Smith (1966): 1.2 points efficiency gain when axial spacing is reduced from 37 to 7 percent of chord.

0.68 points due to upstream pressure effects.
0.52 points due to wake recovery.
Objectives

- Investigate effects of wake dispersion on the compressor performance.
- Conducted in one and a half stage axial compressor with two spacing between rotor and stator (112% and 29% of rotor axial chord at mid-span).
- LES was applied for the flow simulation.
Axial compressor stage at JHU test facility
Pressure rise characteristics of the original compressor stage

Previous LES
- Hah et al.[2015]
- Hah[2017].
Applied LES procedure

- 3rd-order scheme for convection terms.
- 2nd-order central differencing for diffusion terms.
- Sub-iteration at each time step.
- Dynamic model for sub grid stress tensor.
- Multi-block I-grid, 1.2 billion nodes for 4-3-4 simulations with 60 radial nodes inside tip gap.
Test section and blade geometry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casing Diameter (D) [mm]</td>
<td>457.20</td>
</tr>
<tr>
<td>Hub Diameter (d) [mm]</td>
<td>365.76</td>
</tr>
<tr>
<td>Rotor Diameter (D_R) [mm]</td>
<td>455.92</td>
</tr>
<tr>
<td>Rotor Blade Chord (c) [mm]</td>
<td>102.60</td>
</tr>
<tr>
<td>Rotor Blade Span (γ) [°]</td>
<td>45.08, 43.92</td>
</tr>
<tr>
<td>Rotor Blade Stagger Angle (c_A) [mm]</td>
<td>58.6</td>
</tr>
<tr>
<td>Rotor Blade Axial Chord [mm]</td>
<td>53.46</td>
</tr>
<tr>
<td>Nominal Tip Clearance [mm]</td>
<td>0.64 (0.62% of c), 1.8 (1.75%)</td>
</tr>
<tr>
<td>Measured Tip Clearance (h) [mm]</td>
<td>0.5 (0.49%), 2.4 (2.3%)</td>
</tr>
<tr>
<td>Shaft Speed (Ω) [rad s$^{-1}$] {RPM}</td>
<td>50.27 {480}</td>
</tr>
<tr>
<td>Rotor Blade Tip Speed (U_T) [ms$^{-1}$]</td>
<td>11.47</td>
</tr>
<tr>
<td>Reynolds Number ($U_T \cdot c/\nu$)</td>
<td>1.07×10^6</td>
</tr>
</tbody>
</table>
Cross section of two configurations
(tip clearance of 0.5 mm, 0.8% rotor span)

112% spacing

29% spacing
Calculated effects of axial spacing between rotor and stator on total pressure rise

1. Effects of non-uniform pressure field of stator on rotor performance.
2. Effects of rotor wake on stator performance (wake recovery and wake/stator interaction).
Absolute pressure rise from rotor LE to stator TE

- Rotor TE
- Stator LE
- Stator TE
- 29% spacing
- 112% spacing
- Loss generation slope inside stator

Axial Distance

Total Pressure Ratio

1.42
1.41
1.4
Upstream effects of stator pressure field

112 % spacing

29 % spacing
Pt distribution due to wake dispersion

112 % spacing 29 % spacing
Pt distribution at rotor exit
Pt distribution at stator LE

112% spacing
29% spacing

Total Pressure Ratio

Span
Pt distribution at stator TE

Span

1.12% spacing

29% spacing

Total Pressure Ratio
Pt loss from Stator LE to TE
Breakdown of wake mixing loss from rotor TE to stator TE

- Stator LE to Stator TE
- Rotor TE to Stator LE

Wake Mixing Loss

29% Spacing

112% Spacing
Time-averaged Pt at stator TE

29% spacing

112% spacing
Measured Pt at stator exit, 1&1/2 stage high speed compressor (Lurie and Breeze-Stringfellow[2015])
Instantaneous radial vorticity, 29% spacing

30% Span

50% Span
Flow physics of wake recovery
Local strain rate of rotor wake inside stator passage
Turbulence energy transfer through wake stretching

1. Turbulence energy production. (Soranna et al.[2006])

\[P_{ij} = -u_i'u_k \frac{\partial \overline{U_j}}{\partial x_k} - u_j'u_k \frac{\partial \overline{U_i}}{\partial x_k} \]

2. Wake stretching can transfer energy to different frequency domain.

3. Phenomena of small eddy interaction.
No wake stretching in flat plate stators, Pt at 30% span, 29% spacing

Original stator blade

Flat plate blade
Concluding remarks

- 0.5 % Pt gain with the reduced spacing, 63 % is due to upstream pressure effect and 22 % is due to wake recovery.
- Wake recovery is due to energy transfer from turbulence to main flow. Turbulence production becomes negative due to opposing strains as wake stretches in non-equilibrium turbulence.
- Energy transfer occurs through small 3-D vorticities.