NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS)

MEASUREMENT SYSTEM IDENTIFICATION:
INCH-POUND
<table>
<thead>
<tr>
<th>Status</th>
<th>Document Revision</th>
<th>Approval Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td>2006-09-22</td>
<td>Initial Release</td>
</tr>
<tr>
<td>Revision</td>
<td>A</td>
<td>2009-10-09</td>
<td>Foreword changed “NASA programs and projects” to “NASA facilities, programs, and projects.” Editorial changes and change PV/S to PVS throughout. Paragraph 3.2, Clarified definitions of pressure relief device, risk assessment code, test specific device, ground-based PV/S definition, changed “flight weight” to “flight.” Paragraph 4.1 deleted requirement redundant with NPR 8715.3. Numbered subparagraphs within paragraph 4.2, Renumbered paragraph 4.2.1 as 4.2.3, and 4.2.1 subparagraphs as 4.3.1.x, etc. Paragraph 4.2.1.3 renumbered as 4.2.3.3 and scope of exclusion increased. 4.2.1.5 added exclusion for certain steam and condensate piping not to exceed 15 psig, 4.2.4 clarified assessed hazard exclusion requirements, 4.2.3.21 was renumbered to 4.2.3.22 and reworded for clarity, 4.3.3.8 deleted “to,” 4.3.3.15 added new paragraph requiring clear definition of system boundaries, 4.5.1, added “or analyses” to list of options for verification of PVS compliance with original requirements, 4.5.10 added new paragraph allowing continued operation of systems certified under previous requirements provided certain requirements are met, renumbered previous 4.5.10 as 4.5.11, 4.5.12</td>
</tr>
<tr>
<td>Revision</td>
<td>B</td>
<td>2015-09-30</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

was rewritten. 4.8.2.8.4 change “break” to “burst,” Table 4, note 1, changed “rupture” to “burst,” Table 4, change “≥” to “≤,” 4.9.2.6, add reference to Table 2, 4.9.4.1 deleted requirement to send waivers to Headquarters because of redundancy with NPR 8715.3, paragraph 1.13, 4.10.1.7, add “…as approved by the PSM…,” 4.10.1.10 added “or back pressure regulators,” 4.11.2.3 provided that, with certain constraints, the PSM may extend certification periods for PVS to accommodate operational or test needs, 4.11.4.2 provided that, with certain constraints, the PSM may extend certification periods for components to accommodate operational or test needs, 6.2.1.2 changed “break” to “burst” 

Globally deleted “(Requirement),” 1.2 added requirement rationale, and NHB 1700.6, NMI 1710.3, NPR 8715.4, and NPR 8831.2, 2.1 corrected MIL-G-18977 to MIL-G-18997, and added references - NASA-STD-5005 and NASA-STD-8709.20, 2.2 updated date to ASME PTC-25-2014 and changed UL-404 to UL 404, 3.1 added acronyms CFR and CMS, 3.2 changed Certification definition, and modified definition of Excluded PVS, Existing PVS, and Ground-based PVS, added definition for Ground Support Equipment, changed Pressure Safety Valve to Pressure Relief Valve and updated date of ASME PTC-25-2014, 4.2.2 added note, 4.2.3
noted PSM authority, 4.2.3.1 modified text and added basis for pressure and temperature limits, 4.2.3.3 changed line size limitation and added note for justification, 4.2.3.4 added subsections 4.2.3.4.1 and 4.2.3.4.2, 4.2.3.5 added “piping” for clarity and modified certification reference, 4.2.3.12 changed section heading and added subsections 4.2.3.12.1 and 4.2.3.12.2, 4.2.3.14.1 modified text and added requirement rationale, 4.2.3.14.3 changed this section into a note under 4.2.3.14.2, 4.2.3.15 changed systems to vessels and deleted fluid delivery system … included within the scope of this standard, 4.2.3.16 deleted exclusion statement, 4.2.4 added Test Articles and Test Specific PVS, 4.2.4.1 changed negligible to acceptable, 4.2.4.5 added statement referencing Center Configuration Management System, previous 4.2.4.5 becomes 4.2.4.6, 4.2.5 deleted -now covered under Assessed Hazard Exclusion 4.2.4, 4.3.1 added more restrictive requirement statement, 4.3.2 changed “shall” to “are required”, 4.3.3.1 added requirement rationale, 4.3.3.7 added note, 4.3.3.8 added requirement rationale, 4.4.3.3 changed exceptions to conditions, 4.4.3.3.1.1 changed shall to need and created 4.3.3.1.2 for separate requirement and changing previous 4.3.3.1.2 to 4.3.3.1.3, 4.4.3.4 change exceptions to conditions, 4.4.3.4.6 changed 4.4.3.3.1.2 to 4.4.3.3.1.3, 4.5.1.1 added subsection, 4.5.6
corrected 1988 to 1987, 4.6
Added statement to note, 4.6.3.3
deleted “and hence shall only
perform non-Code welding” from
note, 4.7.2 changed shall to must
in example, 4.7.9 added (waiver
and associated
requirements) and changed shall
to need to, 4.8.1.2 added note,
4.8.1.5 added note, 4.8.1.6
changed to a note under 4.8.1.5,
4.8.2.7 deleted certified, and
added note, 4.8.2.8.3 corrected
1988 to 1987, 4.8.2.8.4
renumbered to 4.8.2.9, 4.8.3.1
added note, 4.8.3.6 deleted
subject to wall thinning as the
limiting damage mechanism,
4.8.3.7 inserted text to
clarify wall thickness reduction,
4.9.1.1 changed shall to apply and
must, 4.9.1.7 deleted PVS risks
shall be mitigated in accordance
with, added applies, 4.9.1.10
Requirement deleted, Table 2
corrected equipment loss and
Environmental Effect dollar,
Table 4 corrected ASME Code
dition date, amounts, 4.9.3.6
added statement on successive life
extensions, 4.9.4.1.2 added
additional requirements, 4.10.1.11
deleted only, 4.10.2.1.2 remove
dash in UL-404, 4.10.5.5 changed
shall to may, 4.10.6.2 deleted it
shall be certified (recertified) as,
4.10.6.2.1 reworded to eliminate
second shall statement, 4.10.6.2.2
added note, 4.10.7.2 changed
shall to is prohibited by DOT
regulations from use in
transporting, 4.10.8 subheading
Laboratory Systems, previous
4.10.8 became 4.10.8.1, 4.10.9
added subheading Ground
Support Equipment with
<table>
<thead>
<tr>
<th>Revision</th>
<th>C</th>
<th>2017-08-09</th>
</tr>
</thead>
</table>

- Revised the Applicability statement and updated the list of Applicable documents.
- Deleted acronyms not utilized and deleted the definition “deviation.”
- Editorial corrections to adopt the current NASA standard format.
- Chapter 4, added exclusion for low pressure cryogenic dewars, with conditions.
- Table 4 Note 1 revised and Table 4 References moved to the new Appendix A.
- Chapter 4, added requirements for pressure relief devices (PRDs) on low pressure Dewar liquid withdrawal devices (LWD).
- Chapter 4, added rejection criteria for wire braid reinforced flexible hose, added a new permissive for use of hydraulic pump discharge pressure relief valves to be used as relief devices with certain requirements (and renumbered previous section on Ground Support Equipment).
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Previous section 6.1 References moved to the new Appendix A References (text added to indicate) and added a new Appendix B for PSM Recommended Minimum Qualifications.</td>
<td></td>
</tr>
</tbody>
</table>
FOREWORD

This standard is published by the National Aeronautics and Space Administration (NASA) to provide uniform engineering and technical requirements for processes, procedures, practices, and methods that have been endorsed as standard for NASA facilities programs and projects, including requirements for selection, application, and design criteria of an item.

This standard applies to NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and is intended to be applied on NASA contracts.

This standard establishes uniform requirements for ground-based pressure vessels and/or pressurized systems used by or for NASA or within NASA jurisdiction.

This NASA-STD was developed by the NASA Headquarters Office of Safety and Mission Assurance and representatives of each of the Centers and Component Facilities. Requests for information, corrections, or additions to this standard should be submitted to the NASA, Office of Safety and Mission Assurance, by email to Agency-SMA-Policy-Feedback@mail.nasa.gov or via the “Submit Feedback” link at https://standards.nasa.gov.

[Signature]

Terrence W. Wilcutt
Chief, Safety and Mission Assurance

8/9/2017

Approval Date
TABLE OF CONTENTS

Document History Log .................................................................................................................. 2
Table of Contents .......................................................................................................................... 9
List of Appendices ....................................................................................................................... 10
List of Tables ............................................................................................................................... 10

1. SCOPE ...................................................................................................................................... 11
  1.1 Purpose ................................................................................................................................ 11
  1.2 Applicability .......................................................................................................................... 11

2. APPLICABLE DOCUMENTS ................................................................................................. 12
  2.1 General .................................................................................................................................. 12
  2.2 Government Documents ....................................................................................................... 12
  2.3 Non-Government Documents .............................................................................................. 12
  2.4 Order of Precedence ............................................................................................................. 13

3. ACRONYMS AND DEFINITIONS .......................................................................................... 13
  3.1 Acronyms and Abbreviations ............................................................................................... 13
  3.2 Definitions ............................................................................................................................. 14

4. REQUIREMENTS .................................................................................................................... 18
  4.1 Application of NPD 8710.5 ................................................................................................... 18
  4.2 Excluded PVS ....................................................................................................................... 18
  4.3 General Requirements .......................................................................................................... 22
  4.4 Design and Construction Requirements for New PVS ......................................................... 25
  4.5 PVS Integrity Assessment of Existing Code PVS ................................................................. 28
  4.6 Technical Waiver Requirements for New Non-Code PVS .................................................. 30
  4.7 Existing Non-Code PVS (Legacy) ......................................................................................... 31
  4.8 PVS Integrity Assessment, Remaining Life, and Inspection Requirements ......................... 32
  4.9 System Safety and Risk Assessment Requirements .............................................................. 35
  4.10 Requirements for Specific Components ............................................................................. 42
  4.11 Certification And Recertification Process ............................................................................ 48
  4.12 Operation and Maintenance Requirements .......................................................................... 50

5. OTHER REFERENCES ............................................................................................................... 51

6. BASIS FOR TABLE 4 VALUES ............................................................................................... 53
  6.1 Basis for Table 4 Values ........................................................................................................ 53
LIST OF APPENDICES

APPENDIX A. REFERENCES........................................................................................................................................60
APPENDIX B. PSM Recommended Minimum Qualifications ......................................................................................62
APPENDIX C. INDEX....................................................................................................................................................64

LIST OF TABLES

Table 1. RAC Determination.................................................................................................................................36
Table 2. Severity Determination Table................................................................................................................37
Table 3. Probability Determination Table ............................................................................................................38
Table 4. Tentative Catastrophic PVS Failure Rates per Year (Median Values) for Certified PVS ...........38
Table 5. Technical Waiver Approval Process.........................................................................................................42
Table 6. Application of National Consensus Codes, Standards, and Laws to PVS, ........................................51
Table 7. Summary Catastrophic Failure Rate Data ...............................................................................................54
NASA REQUIREMENTS FOR GROUND-BASED PRESSURE VESSELS AND PRESSURIZED SYSTEMS (PVS)

1.  SCOPE

1.1  Purpose

The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

1.2  Applicability

1.2.1 This standard applies to NASA Headquarters and NASA Centers, including Component Facilities, and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may apply to the Jet Propulsion Laboratory, other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements.

1.2.2 This standard applies to all ground-based equipment designed for, or operating at, positive or negative gauge pressure that is not specifically excluded in Paragraph 4.2. It applies to NASA-owned or -operated, temporary or permanent, ground-based PVS and to non-NASA-owned contractor or tenant ground-based PVS operated on NASA property if that PVS is determined by the Pressure Systems Manager (PSM) to pose a risk to NASA personnel, facilities, or equipment. It specifically includes, subject to Paragraph 4.2, systems often referred to as "low pressure" such as building and facility services equipment (e.g., shop air), laboratory systems, and vacuum systems.

1.2.3 When conflicts exist between this document and NCS, this document shall take precedence, except in those cases where the NCS is invoked by applicable Government regulation.

Note: The basis for this is (1) avoiding inadvertent changes to the NASA requirements when NCS changes, and (2) ensuring that the intentionally developed requirements specific to NASA needs take precedence over more generally intended industry standards.

1.2.4 Requirements in addition to, and that do not conflict with, those listed herein may be appropriate for inclusion in Center-specific PVS policies and procedures to address unique applications and situations not covered by this document. As provided for in NPD 8710.5, it is the PSM’s responsibility to assure that such additional requirements are developed and included in the Center’s certification process.
2. APPLICABLE DOCUMENTS

2.1 General

The documents listed in this section contain provisions that constitute requirements of this standard as cited in the text. Use of more recent issues of cited documents may be authorized by the responsible PSM after review. The applicable documents are accessible via the NASA Technical Standards System at https://standards.nasa.gov or may be obtained directly from the Standards Developing Organizations or other document distributors.

2.2 Government Documents

29 CFR Part 1910 Department of Labor (DOL), Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards

49 CFR Subchapter C Hazardous Materials Regulations (Parts 171-180)

NPD 8710.5 Policy for Pressure Vessels and Pressurized Systems

NPR 1441.1 NASA Records Retention Schedules

NPR 8000.4 Agency Risk Management Procedural Requirements

NPR 8715.3 NASA General Safety Program Requirements

NASA-STD-8709.20 Management of Safety and Mission Assurance Technical Authority (SMA TA) Requirements

2.3 Non-Government Documents

ANSI/NB-23 National Board of Boiler and Pressure Vessel Inspectors, National Board Inspection Code


American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC)

ASME B31 Series Piping Codes

ASME B40.100 Pressure Gauges and Gauge Attachments
2.4 **Order of Precedence**

This standard establishes requirements for ground-based PVS but does not supersede or waive established Agency requirements found in other documentation. Conflicts between this standard and other requirements documents shall be resolved by the responsible PSM in accordance with paragraphs 1.2.3 and 4.3.1.

3. **ACRONYMS AND DEFINITIONS**

3.1 **Acronyms and Abbreviations**

The following acronyms apply to terms used in this standard.

- **API** American Petroleum Institute
- **ASME** American Society of Mechanical Engineers
- **CFR** Code of Federal Regulations
- **CGA** Compressed Gas Association
- **CMS** Configuration Management System
- **COTS** Commercial Off The Shelf
- **DOT** Department of Transportation
- **FS** Factor of Safety
- **IGSCC** Intergranular Stress Corrosion Cracking
- **ISI** Inservice Inspection
- **LWD** Liquid Withdrawal Device
- **MAWP** Maximum Allowable Working Pressure
- **MDMT** Minimum Design Metal Temperature
- **NBIC** National Board Inspection Code
- **NCS** National Consensus Codes and Standards
3.2 Definitions

Certification: The Center PSM’s formal statement that a PVS complies with Agency requirements as specified in NPD 8710.5 and this standard, which require a documented process for assessment of integrity and risk, and compliance with applicable requirements.

Note: Applicable requirements include those found in NASA-STD-8719.17, NASA-STD-5005, applicable laws, statutes, and regulations. Appropriate documentation includes, as a minimum, (1) integrity assessment, (2) currency of periodic components inspections and tests, (3) initial/remaining service life determination, (4) development/update of a periodic inspection plan for use prior to the next certification interval, (5) performance/update of a risk assessment, and (6) a statement of certification/recertification status and limitations, including applicable waivers. These assessments are based on a systems engineering approach. A component may be certified for specified parameters, but certification for actual usage is based on its evaluation in a system, with consideration of actual service conditions, including pressure, temperature, flow rates, cycling, environmental factors, etc. Note also that, while this certification by the PSM is required for operation of a non-excluded pressure system, there may also be other Center or Agency requirements for...
example, a Facility Readiness Review, or requirements in NASA-STD-5005, Standard for the Design and Fabrication of Ground Support Equipment) that apply.

**Code PVS:** Pressure vessels and pressurized systems that are designed, fabricated, installed, code stamped, and maintained in strict conformance with the requirements of the NCS specified as applicable by the PSM.

**Commercial Off the Shelf (COTS):** Commercial items that require no unique Government modification or maintenance over the life cycle of the product to meet the needs of the procuring agency. A commercial item is one customarily used for nongovernmental purposes that has been or will be sold, leased, or licensed (or offered for sale, lease, or license) in quantity to the general public. An item that includes modifications customarily available in the commercial marketplace or minor modifications made to meet NASA requirements is still a commercial item. A custom engineered system, whether supplied by others or constructed by NASA, is not considered COTS.

**Configuration Management:** The identification, control, accounting, and verification of requirements and implementation documentation for formal orderly control of the PVS configuration.

**DOT Service:** Those uses of PVS covered by the regulations contained in 49 CFR 100 – 185, Pipeline and Hazardous Materials Safety Administration.

**Excluded PVS:** A PVS that is not required to meet the certification (or recertification) requirements of NPD 8710.5, Policy for Pressure Vessels and Pressurized Systems, and need not be included in the PVS configuration management system except as noted in specific exclusion clauses of this document. Excluded PVS are subject to other applicable laws, regulations, safety requirements, NASA requirements, and appropriate NCS and must be maintained in accordance with applicable NCS.

**Existing PVS:** PVS are considered to be “Existing PVS” if installed no later than 6 months from the date of original issue of this document (9/22/2006).

*Note: Provides clear distinction between “existing” and “new” PVS, which sometimes have differing requirements because of “grandfathering,” etc.*

**Factor of Safety (FS):** Unless otherwise noted, this refers to the material design factor of safety on structural failure and is equal to the lesser of the material strength divided by the material stress under anticipated loading or the actual buckling load divided by the anticipated buckling load.

**Flexible Hose:** A non-rigid piping component excluding bellows expansion joints.

**Flight PVS:** An assembly of components under pressure, including vessels, piping, valves, relief devices, pumps, expansion joints, gages, etc., that are fabricated in accordance with program requirements specifically for use in aircraft or spacecraft.
Ground-based PVS: All PVS, including Ground Support Equipment (GSE) PVS, and PVS based on barges, ships, or other transport vehicles, not specifically excluded in paragraph 4.2 of this standard. Flight PVS used for their intended purpose aboard active air or space craft, even though on the ground, are not included in this definition, but flight PVS converted to ground use are included.

Ground Support Equipment: Non-flight equipment, systems, or devices specifically designed and developed for a physical or direct functional interface with flight hardware and to which the requirements of NASA-STD-5005 may apply.

Hydraulics: Hydraulic systems using commercially available hydraulic fluid.

Note: Associated pneumatic storage, actuation devices, or components that are used in a hydraulic system are not considered hydraulics. Pressurized hydraulic fluid containing devices are included if the system is included.

Inservice Inspections: Those inspections, examinations, or tests specified in the inspection plan as determined in this document.

Non-Code PVS: Any pressure vessel that is not stamped with the appropriate symbol and documented as complying with the original applicable construction Code or any pressure piping system that does not meet the requirements of the appropriate fabrication code (e.g. ASME Section VIII, B31.1, B31.3), including PVS that were fabricated from non-Code materials by non-Code processes or organizations.

Nondestructive Examination: The application of technical methods to examine materials or components in ways that do not impair future usefulness and serviceability in order to detect, locate, measure, and evaluate flaws; to assess integrity, properties, and composition; and to measure geometrical characteristics.

Owner: The management of the organization responsible for the PVS as defined in NPD 8710.5, Policy for Pressure Vessels and Pressurized Systems.

Policy Waiver: Documented and approved Center policy contrary to the policy in NPD 8710.5, Policy for Pressure Vessels and Pressurized Systems, or this standard. (See NPR 8715.3, paragraph 1.13, for waiver requirements.)

Pressure Relief Device (PRD): A device designed to open without intervention by an operator and relieve excess pressure so as to protect the PVS on which it is installed from damage due to that pressure.

Pressure Relief Valve (PRV): A pressure relief device designed to actuate on inlet static pressure and to reclose after normal conditions have been restored.

Note: This definition is that of ASME PTC 25-2014.
Pressure Systems Manager: The person responsible for implementation of NPD 8710.5, Policy for Pressure Vessels and Pressurized Systems, and this standard at a NASA facility.

Pressure Vessels and Pressurized Systems (PVS): Pressure vessels and pressurized systems within the scope of NPD 8710.5, Policy for Pressure Vessels and Pressurized Systems, and this standard.

Recertification: The renewal of a previous certification with adjustments as necessary to accommodate new information, configuration or operating parameter changes, or PVS degradation.

Risk Assessment Code: A numerical expression of comparative risk of a condition determined by an evaluation of both the potential severity of a consequence and the likelihood of that consequence occurring.

Technical Waiver: Single or case-by-case waiver from this standard.

Test Article PVS: A PVS object(s) being tested for the sole purpose of obtaining data (other than integrity data) on the object(s).

Test Specific PVS: PVS used to perform limited testing of a specific test article. PVS used on a permanent or repeated basis, or built up of components used repeatedly for testing different hardware or configurations are not part of this category.

Waiver: As defined in NPR 8715.3.
4. REQUIREMENTS

4.1 Application of NPD 8710.5

This document provides a greater level of detail of requirements and identifies responsible parties, consistent with NPD 8710.5.

4.2 Excluded PVS

4.2.1 The PVS categories listed in 4.2.3 do not require certification in accordance with NPD 8710.5, Policy for Pressure Vessels and Pressurized Systems and are excluded from PVS Certification per NPD 8710.5 provided they are covered under appropriate inspection and maintenance programs. Each Center’s PSM has the authority to require inclusion of any excluded system at that Center due to the hazards presented by its use in a particular application.

4.2.2 Excluded systems are subject to the requirements of the Occupational Safety and Health Administration (OSHA), the applicable NCS, and NASA safety requirements. Operation of COTS systems shall be within manufacturers' placard limitations.

Note: Unless otherwise provided in 4.2, systems covered by NPR 8831.2, Facilities Maintenance & Operations Management, are not excluded for the following reasons:

A review of NPR 8831.2E resulted in the following determination: NPR 8831.2E provides overall guidance at a higher level than would be a substitute for the requirements of NASA-STD-8719.17. It provides no specific requirements that would ensure the level of safety required by the OSHA regulations and provided by NASA-STD-8719.17. It does not, for example, require that building services piping be constructed in accordance with ASME B31.9, Building Services Piping. In addition, it has the following reference in paragraph 11.3.2.6: “Inspection and Certification. All central utility plant boilers and unfired pressure vessels shall be inspected and certified in accordance with NPD 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems.”

4.2.3 Category Exclusions.

Note: The PSM has authority to determine applicability of any Category Exclusion to specific PVS.

4.2.3.1 Water piping systems with design pressure not exceeding 160 pounds per square inch gauge (psig) and design temperatures not exceeding 210 degrees F for which surge is not a design consideration or has been mitigated.

Note: Pressurized water storage vessels within the range of this exclusion may be assessed and excluded under the provisions of the Assessed Hazard Exclusion below at the discretion of the PSM at each Center.

4.2.3.2 Water deluge systems not to exceed 250 psig for which there is no hazard to personnel in the event of failure.
4.2.3.3 Control, instrument, shop air, or inert gas piping systems with Maximum Allowable Working Pressure (MAWP) not to exceed 150 psig and line sizes not to exceed Nominal Pipe Size (NPS) 2 inch. Relief valves and pressure vessels (air receivers, tanks, etc.) are not included in this exclusion. This exclusion does not apply to higher pressure or larger size PVS that supply the lower pressure PVS.

Note: An increase from 3/8 inch to ½ inch was agreed to at the August, 2007 meeting at GSFC. Further analysis justifies exclusion up to 2 inch. 5/7/2014. These analyses are accessible under Related Documents at: http://www.hq.nasa.gov/office/codeq/doctree/871917.htm. Also, note that while this specifies an exemption for the piping, the air receiver and relief device associated with the system are not exempt.

4.2.3.4 COTS Hot Water Systems for Buildings, as described below:

4.2.3.4.1 Small potable water heaters and water storage tanks that are listed exceptions to the requirements of the ASME Boiler & Pressure Vessel Code, Section IV (Heating Boilers), Part HLW (Requirements for Potable Water Heaters), paragraph HLW-101, provided that all of the requirements of HLW-101 are met. Although these excepted heaters are required to have ASME safety relief valves, those safety relief devices need not be included in the certification program, provided that the Center’s Preventative Maintenance program includes them in normal Preventative Maintenance scheduled tasks.

Note: It is recommended that PSMs spot check capacity of relief devices for hot water tanks and heaters as part of normal program administration.

4.2.3.4.2 Boilers within the scope of ASME Section IV (i.e. H-Stamped), other than their safety relief valves, provided their initial installation is documented as Code compliant and they are included in the site’s preventive maintenance program. Safety relief valves associated with these boilers are subject to the design and periodic testing requirements of this standard and must be recorded in the certification program.

4.2.3.5 Steam and condensate piping systems for building heating up to 15 psig, regardless whether the steam comes from a low-pressure boiler, or a high-pressure central heating plant. If the steam piping system is fed by a higher-pressure steam system, the first relief device following the pressure-reducing component shall be certified in accordance with the requirements of paragraph 4.10. For ASME Section IV steam boilers refer to paragraph 4.2.3.4.2.

4.2.3.6 COTS prepackaged pressurized water and steam cleaning systems maintained and operated in strict accordance with the manufacturer’s recommendations. This does not include custom fabricated/assembled systems.

4.2.3.7 Fire protection water systems for facilities.

4.2.3.8 COTS prepackaged refrigerators, freezers, and heating, ventilating, and air conditioning equipment.
4.2.3.9 Fire extinguishers covered by: 29 CFR Part 1910, Subpart L, "Fire Protection," including portable extinguishers, standpipe and hose systems, automatic sprinkler systems, fixed dry chemical extinguishing systems, carbon dioxide extinguishing systems, and halogenated extinguishing agent systems.

4.2.3.10 Glove boxes.

4.2.3.11 Fuel storage PVS supplied with licensed motorized vehicles and meeting applicable Department of Transportation (DOT) regulatory requirements.

4.2.3.12 Hydraulic Systems, as described below:

4.2.3.12.1 COTS prepackaged hydraulic power systems and oil lubrication systems provided they are used as specified/recommended by the manufacturer, are used within rated capacity, and are used and protected against overpressure as per the manufacturer’s recommendations, service intervals, etc. This exclusion does not exempt (a) any interface joints to non-COTS equipment from being qualified in accordance with the applicable NCS and (b) any external PVS not integral to the OEM (Original Equipment Manufacturer) COTS system.

4.2.3.12.2 Hydraulic Power Systems and Oil Lubrication Systems with design temperatures not exceeding 160°F and design pressure / MAWP not exceeding 150 psi (typically, return side piping). This exclusion does not exempt (a) any constituent piping and piping welds from being qualified in accordance with the applicable national piping code, (b) any system pressure vessels from fully complying with appropriate NCS (e.g. ASME Section VIII BPV code) (c) periodic retesting of components in accordance with other sections of this document.

4.2.3.13 COTS welding equipment.

4.2.3.14 COTS laboratory equipment, with the following caveats;

4.2.3.14.1 Equipment that could be pressurized above its MAWP for any reason by the fluid delivery system shall have appropriate certified overpressure protection installed and have the fluid delivery system included within the scope of this standard.

*Note: Requirement is consistent with ASME B31.3, ASME Section VIII, and Compressed Gas Association (CGA) P-1.*

4.2.3.14.2 This exclusion does not apply to laboratory designed and assembled systems.

*Note: An example is a mass spectrometer with a manufacturer’s placard rating of 25 psig that receives gas from a 2000 psig DOT cylinder via a pressure regulator and plastic tubing. The mass spectrometer and DOT cylinder (see 4.2.3.20) are not subject to certification in accordance with this document although they must be safely operated in accordance with manufacturer’s recommendations. There must be a certified pressure relief device (PRD) (see
4.10.1) downstream of the cylinder’s pressure regulator (see 4.10.3), and the plastic tubing must be adequately rated and restrained (see 4.10.4). The required PRD may be internal to the mass spectrometer; however, such an internal PRD is subject to the requirements of 4.10.1. Consequently, a separate external (accessible) PRD is usually added to meet the requirements of this document.

4.2.3.15 Vacuum vessels with volumes not greater than 100 cubic feet. However, all vacuum vessels that could inadvertently be pressurized above atmospheric pressure by internal or external sources (e.g., as a result of valve leakage on a test gas line or a pressure regulator or mass flow controller failure) shall have appropriate overpressure protection (see 4.10.1, particularly 4.10.1.12), which is reviewed and approved by the PSM.

4.2.3.16 Vacuum piping above ground not greater than NPS 6, which is adequately supported and restrained, and buried vacuum piping of any diameter. The relief protection of all vacuum piping systems attached to positive pressure sources shall be reviewed and approved by the PSM.

4.2.3.17 Temporary non-NASA owned construction or maintenance related PVS, provided the hazards to personnel are low and the operating contractor is contractually obligated to meet, and demonstrates compliance with, all applicable Federal, State, and local safety regulations.

4.2.3.18 Atmospheric storage tanks that only are subjected to hydrostatic pressure and that comply with the applicable American Petroleum Institute (API) or Underwriters Laboratories Incorporated (UL) standards.

4.2.3.19 Self-contained pressure eye wash systems, provided overpressure protection devices are periodically tested or replaced in accordance with manufacturers’ recommendations.

4.2.3.20 DOT specification containers that are periodically retested and requalified strictly in accordance with 49 CFR 180, provided that the owner’s OSHA inspection requirements of 29 CFR 1910.101 are met. This exclusion does not apply, however, to other attached components or laboratory equipment or other systems using or being charged from these containers.

4.2.3.21 Natural gas distribution systems.

4.2.3.22 Qualified flight PVS used for their intended purpose aboard air or spacecraft. This is inclusive of PVS testing and operation while the air or spacecraft is on the ground, but does not apply to flight PVS that have been converted to ground use.

4.2.3.23 Low pressure (not exceeding 15 psig) COTS portable cryogenic dewars, provided:

4.2.3.23.1 The dewar is not modified in any way,
They are installed, operated, and maintained in accordance with the manufacturer’s specifications,

They are equipped with appropriate PRDs that comply with paragraph 4.10.1.13,

They are equipped with pressure gauges that are in compliance with paragraph 4.10.2.1.3, and

Safety lanyards, if provided, are appropriately anchored.

Assessed Hazard Exclusion. The PSM has the authority to exclude other PVS including Test Articles and Test Specific PVS from the Center’s certification program if the following conditions are met:

A risk and hazard assessment is performed in accordance with NPR 8715.3, NASA General Safety Program Requirements and paragraph 4.9 of this standard and demonstrates that any risk to personnel is acceptable under any failure scenario.

Any facility damage potential identified by the risk and hazard assessment is accepted through the Center’s risk acceptance process.

Any mission risk identified by the risk and hazard assessment is accepted through the program’s risk acceptance process.

All other applicable NASA safety requirements are met.

The technical basis for the exclusion is documented in the Center Configuration Management System (CMS).

All other applicable regulatory safety requirements are met.

Reserved. Test Specific Exclusions formerly included under this section are now covered under Assessed Hazard Exclusion (4.2.4).

General Requirements

PVS shall meet the requirements of State and local boiler and pressure vessel statutes unless exclusive federal jurisdiction applies. In the event of a conflict between this document and applicable statutes or regulations, the more restrictive requirement shall govern.

PVS are required to comply with applicable Federal laws and regulations (e.g., 29 CFR 1910).

General Requirements Applicable to All Non-Excluded PVS.

Each NASA Center, including Component Facilities and the Jet Propulsion Laboratory, shall implement a formal PVS certification process and provide a documentation
and configuration management and control system that provides critical system information necessary for determining PVS integrity.

Note: This provides the means of verification for basic OSHA regulation compliance. It is consistent with OSHA Letter Of Interpretation to Morgan, dated 7/17/2006, which specifies that the requirement for code compliance means “Nameplate, Records, and Stamping (NRS),” and which specifies that vessels without Nameplate, Records, and Stamping require “items such as: performing inspections and making necessary repairs; defining design parameters; and preparing drawings and calculations; basing calculations on applicable codes/standards; evaluating unidentified materials; use of radiography; marking with nameplate or stamping; and performing pressure testing.”

4.3.3.2 All PVS shall be certified, recertified, and documented in accordance with the requirements of NPD 8710.5 and this standard.

4.3.3.3 The original service life or remaining safe life of each PVS shall be documented at the time of certification or recertification based on relevant failure modes, cyclic service history, rates of degradation, damage mechanisms, or other appropriate factors.

4.3.3.4 Potential damage mechanisms shall be identified and evaluated, including but not limited to fatigue, creep, and corrosion.

4.3.3.5 All conditions that cause changes in the current estimate of remaining life shall be assessed and documented, with appropriate modification to the inspection and recertification plans of record, in accordance with paragraph 4.8 of this standard.

4.3.3.6 Compliance with the requirements of this standard shall be documented and approved by the PSM in accordance with paragraph 4.11 in order for the PVS to be designated as “certified.”

4.3.3.7 The MAWP, operating temperature range, and other service conditions shall be documented for each PVS.

Note: Various OSHA regulations and interpretations require the use of ASME Code Vessels. OSHA Letter Of Interpretation to Morgan 07/17/2006 specifies that “Code” means “Nameplate, Records, and Stamping.” Parts of the records for a code vessel are operating temperature range and other service conditions.

NHB 1700.6 (1976) (withdrawn), paragraph 501.1.a. noted that these conditions “should” be documented.

NMI 1710.3D (1994) (withdrawn), paragraph 5.a. stated “All pressure vessels, pressurized components, and pressurized systems shall be designed, fabricated, installed, operated, periodically inspected, maintained, repaired, and certified/recertified in accordance with the applicable codes, standards, guides, and Federal regulations listed in Attachment A.” Attachment A included the
ASME Boiler and Pressure Vessel Code, the ASME Code for Pressure Piping, the American Petroleum Institute (API) codes, the National Board Inspection Code, the Occupational Safety and Health Administration (OSHA) standards, and others. These standards all require consideration of service conditions.

NPR 8715.4 (1997-2006) (withdrawn), paragraph 7.2.1.1 specified that drawings “should” contain ...”design and operating conditions.”

4.3.3.8 Relief valve exhausts and other vents shall incorporate appropriate means of reacting thrust loads, including balanced thrust (“zero thrust”) vent tees and structural supports as appropriate.

*Note: This specific, and redundant, requirement was put in this document after a mishap at a NASA Center, in which a worker was severely injured by an unrestrained vent pipe that unscrewed under venting (thrust) conditions. ASME B31.3 (successor to the Pressure Piping Code specified in NMI 1710.3D, noted above) states: “301.5.5 Discharge Reactions. Piping shall be designed, arranged, and supported so as to withstand reaction forces due to let-down or discharge of fluids.”*

4.3.3.9 PVS shall be pressurized only after initial certification is complete, with the exception of pressurization that may be required for initial integrity testing of the PVS.

4.3.3.10 PVS that do not meet applicable NCS, guides, and regulations shall only be certified and allowed to operate if a risk and hazard assessment has been performed, the owner acceptance of residual risk has been documented, and the Center approval has been formally documented by means of a waiver in accordance with paragraphs 4.6 or 4.7 of this standard.

4.3.3.11 A periodic inspection plan shall be developed for all PVS in accordance with paragraph 4.5 and 4.11 of this standard.

4.3.3.12 Inspection activities and integrity verification shall be performed to ensure PVS are maintained in a state of compliance with the certification (recertification) requirements of paragraph 4.11 of this standard.

4.3.3.13 The PSM has the authority to interpret this standard. (This is not to be interpreted as authority to change or waive the requirements of this standard.)

4.3.3.14 A change in the service of a PVS shall require evaluation for applicability of the original Code for the new service, possible application of a new Code appropriate to the new service, and possible reevaluation in accordance with the applicable NCS.

4.3.3.15 Each certified pressure system shall have clearly defined boundaries/interfaces (to ensure that all portions of pressure systems are accounted for and appropriately certified).
4.4 Design and Construction Requirements for New PVS

All new ground-based conventional (i.e., nonflight) PVS shall be designed, fabricated, assembled, erected, inspected, examined, and tested in accordance with the appropriate NCS, codes, and regulations.

4.4.1 Pressure Vessels Used To Transport Fluids Under Pressure.

4.4.1.1 Pressure vessels used to transport fluids under pressure shall comply with the DOT regulations of 49 CFR 171-180 or ASME Section XII as applicable.

4.4.2 [Reserved]

4.4.3 Pressure Vessels Not for Transport of Pressurized Fluids.

4.4.3.1 New pressure vessels, including heat exchangers, shall be ASME Section VIII code stamped as specified within the scope as being used and registered with the National Board.

4.4.3.2 Vacuum vessels shall be ASME Section VIII code stamped and registered with the National Board except as provided in paragraphs 4.2.3.15, 4.4.3.3, and 4.4.3.4 of this standard.

4.4.3.3 For new vacuum vessels, or alterations/repairs to existing vacuum vessels, operating in high vacuum service (internal pressure less than 10^-3 torr) or in other cases involving only external atmospheric pressure (i.e., no external pressure greater than 14.7 psig) where specific operational needs make ASME Section VIII or The National Board of Boiler And Pressure Vessel Inspectors NB-23 code stamping unfeasible, all of the requirements specified elsewhere in this standard shall apply with the following conditions (this paragraph is not to be construed to accept the purchase or use of non-code stamped vacuum vessels where there is not a specific overriding need):

4.4.3.3.1 No ASME “U” Stamp (“code stamp”) or National Board Inspection Code (NBIC) “R” Stamp is required. All documentation requirements of this standard shall be met with the following exceptions:

4.4.3.3.1.1 The ASME or NBIC Data Report shall be processed in all respects as for a code stamped vessel, but it need not be submitted to the National Board.

4.4.3.3.1.2 The Certificate of Shop Inspection shall be signed either by a National Board commissioned inspector or by the PSM.

4.4.3.3.1.3 For industry standard components such as potted connectors and “Conflat” flanges used in strict accordance with the manufacturer’s ratings and recommendations, material records and analysis are not required provided sufficient information regarding material is available to properly perform any welding or brazing processes required. This does not exclude from the ASME Code analysis requirement those industry standard components that are rated by their manufacturers.
only for external pressure and that require relief protection above a PRD setting of 2 psig (or less, if so specified by the manufacturer). If relief protection is required, bolting or other fasteners shall be analyzed in accordance with the ASME Code or other means acceptable to the PSM to determine that they have a positive pressure rating sufficient for the credible positive pressure scenarios.

4.4.3.3.2 Intermittent welds are permitted on nozzles and reinforcing pads; however, an appropriate code equivalent analysis shall be performed to verify the adequacy of the weld design.

4.4.3.3.3 Nozzle reinforcement may be achieved using configurations other than those illustrated in ASME Section VIII, however adequacy of such designs shall be demonstrated by appropriate ASME Code equivalent analysis or testing.

4.4.3.3.4 The ASME Section VIII requirement for an internal pressure test (hydrostatic or pneumatic) may be replaced with a vacuum test to 1.5 times the specified pressure differential, but not to exceed an external pressure of 14.7 psig. This exception shall not be used in those cases where proof test is used in lieu of analysis if an overpressure of 1.5 times the maximum allowable working (differential) pressure is not attained.

4.4.3.3.5 Materials other than those specified for use in ASME Section VIII and its reference documents may be used; however, their adequacy for the intended application shall be demonstrated to the satisfaction of the PSM.

4.4.3.3.6 Allowable stresses and other material properties for “non-code” materials shall be obtained following the approach and safety factors used in developing ASME Section VIII allowable stresses and other values.

4.4.3.3.7 ASME Code pressure relief capacity requirements shall be met for internal pressurization sources, but the relief device need not be UV stamped provided the set pressure is less than 15 psig.

4.4.3.3.8 If a vacuum vessel requires relief protection with PRD setting above 2 psig due to the nature of the potential pressurization source, the vessel pressure shell shall be structurally qualified in accordance with the requirements of the ASME Code, Section VIII, Div. 1.

4.4.3.3.9 If relief protection of any set pressure is required for a vacuum vessel due to attached pressure sources, bolting or other fasteners shall be analyzed in accordance with the ASME Code or other means acceptable to the PSM to determine that they have a positive pressure rating sufficient for the credible positive pressure scenarios.

4.4.3.3.10 The relief protection for all vacuum vessels attached to any positive pressure source shall be reviewed and approved by the PSM.
4.4.3.4 The foregoing conditions to the requirements of this standard and of the ASME and NBIC Codes notwithstanding, and not reducing the effect of any other requirement of this standard or of the ASME or NBIC Codes, specific note is made of the following requirements:

4.4.3.4.1 Vacuum vessels shall be fabricated, repaired, or altered only by either manufacturers having an ASME “Code Stamp” (ASME “U” Authorization) or NBIC “R” Stamp, or that have been audited and determined by the PSM to have an equivalent quality assurance manual and process, including implementation.

4.4.3.4.2 The PVS manufacturing or alteration shall be in strict accordance with the quality assurance manual of the manufacturing organization.

4.4.3.4.3 The PSM shall review and approve designs and design analysis prior to start of PVS construction.

4.4.3.4.4 All welding shall be:

4.4.3.4.4.1 Performed in accordance with procedures qualified in accordance with the ASME Boiler and Pressure Vessel Code, Section IX, including all essential variables for the joint in question.

4.4.3.4.4.2 Performed by welders qualified and current in accordance with the ASME Boiler and Pressure Vessel Code, Section IX, on such weld procedures.

4.4.3.4.5 Post weld heat treatment shall be performed as required and in accordance with the ASME Code.

4.4.3.4.6 Except as provided in 4.4.3.3.1.3, impact and other testing shall be performed as required and in accordance with the ASME Code.

4.4.3.4.7 Inspections shall be performed by inspectors trained and certified in use of the techniques being applied, in accordance with the requirements of the ASME Boiler and Pressure Vessel Code, Section V.

4.4.4 Boilers and Boiler Piping (See also Table 6).

4.4.4.1 Power boilers shall be ASME Section I code stamped and registered with the National Board.

4.4.4.2 Power boiler piping shall meet ASME B31.1, Power Piping.

4.4.4.3 Power boiler external piping shall be ASME code stamped.

4.4.4.4 Heating boilers shall be ASME Section IV code stamped and registered with the National Board.

4.4.5 Non-Boiler Piping Systems.

4.4.5.1 Process piping shall meet the requirements of ASME B31.3, Process Piping.
4.4.5.2 Other piping shall meet the requirements of the most applicable ASME B31 series Code.

4.5 PVS Integrity Assessment of Existing Code PVS

4.5.1 Existing Code PVS shall be documented as meeting the requirements of the original construction Code by means of record collection, or analyses, and physical measurements and condition assessment.

4.5.1.1 Original Code information shall be retained.

4.5.2 Existing code stamped vessels that do not meet original ASME Code requirements shall either be repaired in an ASME Code-compliant manner (see paragraph 4.5.4 of this standard) and brought into conformance, re-rated to a lower pressure, recertified as non-Code PVS in accordance with paragraph 4.7 of this standard, or removed from service.

4.5.3 Code PVS shall only be altered or repaired in accordance with the requirements of the applicable NCS.

4.5.4 ASME code stamped items shall only be repaired or altered by National Board NB-23 certified organizations (for example “R” and “VR” stamp holders) in strict conformance with their approved quality manual.

*Note: Government or contractor organizations that do not have an “R” or “VR” stamp do not meet the requirement.*

4.5.5 Re-rating of ASME Code vessels, if required, shall be in accordance with applicable NCS.

4.5.6 Code PVS for which current Code requirements have changed from the original fabrication Code shall be reassessed and re-rated as necessary to assure an acceptable risk level.

*Note: For example, the 1987 changes to fracture toughness rules for prevention of brittle fracture could significantly increase the assessed risk of continued operation at the original design limits. Thus, a 4 inch thick vessel fabricated from A-212 Grade B (Firebox) material is now known to have an allowable minimum design material temperature (MDMT) of 118 degrees F. The vessel nameplate likely shows an MDMT of –20 degrees F. If the vessel normally receives ambient compressed gas at 60 degrees F, the vessel would require risk reassessment and likely additional hazard mitigation to assure continued safe operation.*

4.5.7 The PSM has the authority to determine when or which Code requirement changes require reassessment of particular PVS.

4.5.8 Pressure vessels designed for the transport of pressurized fluids but that are in permanent or semi-permanent installations shall meet the requirements in paragraph 4.10.6 of this standard.
4.5.9 Code PVS that have been re-designated as non-Code shall be clearly and visibly marked to indicate the non-Code status.

4.5.10 A system certified under the predecessor documents to this standard (i.e., NHB 1700.6, Guide for Inservice Inspection of Ground-Based Pressure Vessels and Systems and NPR 8715.4, Inservice Inspection of Ground-Based Pressure Vessels and Systems, both obsolete) may, without a waiver, be returned to service (if inactive) or continue to be operated, for the balance of its certification interval, provided the following conditions are met:

4.5.10.1 A remaining life evaluation was used to determine the certification interval (not simple selection from the inspection interval tables).

4.5.10.2 The remaining life assessment is validated by appropriate inspection to ensure that relevant degradation has not occurred during the period of inactivity. If system degradation has occurred during the period of inactivity, the remaining safe life assessment and certification date shall be adjusted as appropriate.

4.5.10.3 The original certification has been assessed in light of current knowledge and requirements with regard to relevant damage mechanisms.

4.5.10.4 System documentation has been validated as being representative of the configuration and condition of the system.

4.5.11 For existing PVS that have not undergone a full initial integrity assessment in accordance with paragraph 4.8 of this standard, and which do not meet the requirements of paragraph 4.5.10, operation shall only be permitted following approval of a technical waiver in accordance with paragraph 4.9.4. The following paragraphs provide guidance on typical evaluations to be performed for waiver documentation through an abbreviated integrity and risk assessment review in order to obtain a reasonable level of confidence that the system to be placed in operation does not involve an excessive level of risk:

4.5.11.1 Evaluate major energy and toxic material sources supplying and/or affecting the system.

4.5.11.2 Perform typical and worst case wall thickness calculations, including both stress and stability.

4.5.11.3 Perform typical nozzle reinforcement calculations.

4.5.11.4 Perform analysis of typical high stress areas such as nozzles, supports, or other significant discontinuities.

4.5.11.5 Verify material thickness and other aspects of configuration to ensure applicability of analysis.

4.5.11.6 Make conservative assumptions as to material characteristics if actual material is not known.
4.5.11.7 Consider heat treatment state for materials and operations where this may be a factor.

4.5.11.8 Perform visual inspections of overall PVS condition, including such items as system configuration, critical weld configuration, condition and quality, corrosion, erosion, or other system deterioration.

4.5.11.9 Perform volumetric inspections of critical welds or welds most likely to experience degradation, with quantity and location subject to the approval of the PSM.

4.5.11.10 Evaluate pressure relief capacity versus needs.

4.5.11.11 Identify most likely failure modes, including fatigue, and most likely locations for those failures to occur.

4.5.11.12 Consider service history with regard to relevant failure modes, including cyclic service history, and most likely locations for accumulated service related damage.

4.5.11.13 Evaluate and document the risk for the PVS.

4.5.11.14 Develop a plan and schedule for the full inspection and recertification of the PVS, based on a ranking of risks and associated analyses, inspections, and mitigations, with schedule determined to minimize the overall risk.

4.5.12 Each Center shall maintain: an inventory of all active PVS, PVS evaluations, and risk based plans for PVS certification, placing each system into one of the following classifications: (1) fully compliant with the requirements of this standard, (2) less than fully compliant, but posing no apparent immediate unacceptable risk, or (3) posing a risk such that immediate mitigation or removal from service is required. Those PVS in group (2) do not require immediate certification (recertification), but shall still be certified in accordance with this standard as per the risk-based plan.

4.6 Technical Waiver Requirements for New Non-Code PVS

Note: This paragraph does not endorse the purchase of new non-Code PVS, but offers guidance for those rare cases where new PVS are essential to mission success but cannot reasonably meet all of the requirements of the appropriate NCS. In most cases, operation of new non-code PVS would be a violation of OSHA regulations.

4.6.1 Technical waiver approval and risk acceptance shall be obtained prior to initial operation of the non-Code PVS.

4.6.2 New non-Code PVS shall be certified in accordance with paragraph 4.11 of this standard.

4.6.3 To the extent possible, Code design and construction techniques shall be utilized on non-Code PVS. In particular, this shall include the use of:
4.6.3.1 Code material; i.e., material whose specifications and grades are approved for use by the Code that would otherwise apply to construction.

4.6.3.2 Components, (i.e., valves, fittings, elbows) that are certified to standards approved for use by the Code that would otherwise apply.

4.6.3.3 Code-certified welding processes, personnel, and “U” authorized shops that meet all applicable ASME quality assurance and certification requirements for Code construction.

Note: NASA fabrication shops that do not possess an ASME “U” authorization, regardless of individual personal training, qualifications, and certifications are not considered equivalent to Code certified shops.

4.6.3.4 Material design Factor of Safety (FS) of no less than a Code PVS.

4.7 Existing Non-Code PVS (Legacy)

4.7.1 Non-Code PVS shall be documented and evaluated to the extent possible as meeting the requirements of the most applicable NCS.

4.7.2 Non-Code PVS shall only be altered or repaired in accordance with the requirements of the most applicable NCS to the extent possible. See 4.4.3.3 for alterations to existing vacuum vessels.

Note: (Example) A non-code stamped PVS that has a parallel in ASME Code construction must be repaired or altered by National Board NB-23 certified organizations in strict conformance with their approved quality manual except for Code stamping.

4.7.3 Assessment of non-Code PVS that have a parallel in an NCS shall include assessing new changes in Code requirements that have updates from the edition used for original evaluation. The PSM has the authority to determine when or which Code requirements changes require reassessment of particular PVS.

4.7.4 The design and operational limits of existing non-Code PVS shall be determined based on the FS in a manner consistent with the most applicable NCS from the time of construction.

Note: For ASME Section VIII, Div. 1 vessels, design tensile stress FS = 3.5 on ultimate stress since issuance of the 7/1999 Addenda to the 1998 Code, FS = 4.0 from 8/1951 Addenda to the 1950 Code through the 7/1999 Addenda to the 1998 Code, and FS = 5.0 prior to 8/1951 (except for a brief period during World War II based on Code Case 968).

4.7.5 All existing non-Code PVS shall have a risk assessment performed and be processed in accordance with NPD 8710.5 and this standard.
4.7.6 When the risk associated with operation of any PVS is unacceptable, the risk shall be mitigated in accordance with the risk reduction protocol in paragraph 1.7.1 of NPR 8715.3, NASA General Safety Program Requirements, or the PVS shall be removed from service.

4.7.7 Code PVS that have been redesignated as non-Code shall be clearly and visibly marked to indicate the non-Code status.

4.7.8 DOT specification vessels in permanent or semi-permanent installations that do not strictly comply with 49 CFR 171-180 shall be designated and certified as non-Code PVS. See paragraph 4.10.6 for additional specific requirements for DOT vessels.

4.7.9 The provisions of 4.5.10 and 4.5.11 (waiver and associated requirements) apply to existing non-Code PVS that need to be placed in service prior to certification or recertification in accordance with paragraph 4.11 of this standard.

4.8 PVS Integrity Assessment, Remaining Life, and Inspection Requirements

4.8.1 PVS Integrity Assessment.

4.8.1.1 Integrity assessment of each PVS shall be performed and documented at the time of certification or recertification.

4.8.1.2 Integrity assessment shall be consistent with the methodologies identified in the appropriate post-construction NCS.

*Note: this includes consideration of flaws with evaluation per standards such as API 579-1, PCC-2 and other applicable NCS.*

4.8.1.3 The PVS integrity assessment shall include an inspection plan that addresses credible damage mechanisms for the specific PVS.

4.8.1.4 Verification of integrity of each in-service PVS shall be documented at each periodic inspection interval as specified in the inspection plan in compliance with the appropriate NCS.

4.8.1.5 If at any time a PVS is not fit for the intended service, the PVS shall be immediately removed from service and the certification of the PVS shall be revoked.

*Note: Integrity verification is achieved by meeting the requirements of this NASA standard and appropriate reference documents such as ANSI/NB-23. The period of re-inspection for each PVS is based on maintaining a continuous state of compliance with these requirements.*

4.8.2 Remaining Life Assessment Requirements.

4.8.2.1 The original service life or remaining safe life of each PVS shall be documented at the time of certification or recertification through a detailed integrity assessment based on
nondestructive examination (NDE) and inspection results, relevant damage mechanisms, cyclic service history, rates of degradation, and other appropriate factors.

4.8.2.2 The engineering assessment for remaining life shall be consistent with methodologies of appropriate post-construction NCS.

4.8.2.3 The rate of service-related or environmentally-induced wall thinning of PVS shall be documented by means of periodic thickness inspection, with appropriate adjustments made to the estimated remaining life, inspection plan, and recertification plan.

4.8.2.4 When PVS service life is limited by fatigue considerations, NCS-based fatigue or fracture life assessment shall form the basis for specified cyclic life.

4.8.2.5 When NCS fatigue analysis is performed on PVS that are not fully compliant with the NCS from which the technique is derived (e.g., when ASME Sect. VIII, Div. 2, fatigue analysis is performed on an ASME Sect. VIII, Div. 1, or non-Code vessel), an appropriate additional FS shall be applied to the allowable cyclic life based on the risk and hazard assessment.

Note: The fatigue life assessment methodology of ASME Section VIII, Div. 2, may be used to estimate fatigue life of Div. 1 vessels or non-Code vessels provided the allowable stress values from Div. 1 are substituted for Sm and appropriate consideration is given to the additional requirements imposed on Div. 2 material, fabrication, and inspection. Greater FS on cyclic life must be incorporated as uncertainty and unknowns increase. Similarly, the fracture assessment methodology of Div. 3 may be used to assess non-Div. 3 vessels provided additional consideration is given to uncertainties in stress intensity factors and fracture toughness for material that was not fully documented at the time of fabrication in accordance with Div. 3 requirements, which is typically the case for old PVS.

4.8.2.6 Cyclic life usage shall be obtained from history files or logs or conservatively estimated and documented at the time of each periodic cyclic service inspection, with appropriate adjustments made to the estimated remaining cyclic life in the recertification plan.

4.8.2.7 Unless specifically documented in the original design, the remaining life of any PVS shall not exceed 40 years, and the recertification period shall be in accordance with Paragraph 4.11 of this standard.

Note: Certification period is limited to half the remaining life in accordance with 4.11.2.3.

4.8.2.8 Service life extension analysis shall include, but is not limited to, consideration of the following:

4.8.2.8.1 Relevant characteristics of the PVS as determined by the application of appropriate NDE and/or testing.
4.8.2.8.2 The fidelity of the NDE methods employed to locate relevant flaws.

4.8.2.8.3 Brittle fracture failure mode when actual service temperature may be less than the MDMT of the PVS material using post-1987 ASME Boiler & Pressure Vessel or Piping Code rules for fracture toughness (e.g., UCS-66 rules in Section VIII, Div. 1).

4.8.2.9 If leak before burst failure mode forms the basis of life extension, leak detection requirements shall be implemented and documented in the PVS risk assessment.

4.8.3 Inspection Requirements.

4.8.3.1 Inspection intervals for all relevant damage mechanisms shall be specified in the inspection plan consistent with intervals recommended in the applicable NCS and this standard.

*Note: PSM is responsible for assuring the level of inspections is appropriate and cost effective for the type of PVS asset. Reassessment of level, type and need for inspections should be performed at intervals. This includes effectiveness of inspections, cost, and potential new technologies.*

4.8.3.2 The NDE inspection frequency for fatigue-limited PVS shall be no more than one half the Code allowable cyclic fatigue life, which is established either by postulating a minimum detectable flaw size using appropriate NDE method(s) to determine remaining life cycles up to reaching critical flaw size or by using the cumulative cyclic usage factor and S/N diagram approach of ASME Boiler and Pressure Vessel Code, Section VIII, Div. 2, or other applicable NCS.

4.8.3.3 In-service inspections shall be performed to obtain sufficient data to ensure that unanticipated forms or rates of degradation, service changes, or other factors have not changed the remaining life.

4.8.3.4 Records of inspection shall be maintained appropriately.

4.8.3.5 Personnel performing inspections and tests shall be appropriately qualified and certified as applicable in accordance with the appropriate NCS.

4.8.3.6 Baseline wall thickness shall be verified for all PVS prior to initial operation or certification.

4.8.3.7 In-service wall thickness reduction (e.g. corrosion, erosion) inspections shall be based on the PVS integrity assessment.

4.8.3.8 PVS whose service life is limited by fatigue or brittle fracture shall have fatigue inspections performed no later than when the PVS has experienced one-half of the specified number of permissible load cycles.
4.8.3.9 Inspection intervals shall be reviewed and adjusted throughout the life of a PVS to incorporate safety-related Code changes, unanticipated rates of degradation, or other relevant factors.

4.9 System Safety and Risk Assessment Requirements

4.9.1 Tailored System Safety Requirements for PVS.

4.9.1.1 The system safety activity requirements of Chapter 2 of NPR 8715.3, NASA General Safety Program Requirements, apply and must be tailored to the PVS program.

4.9.1.2 Risks shall be identified and documented for all PVS within the scope of this standard, the risk status shall be updated during the certification/recertification process, and new risks shall be identified as appropriate throughout the life of a PVS.

4.9.1.3 Risks shall be assessed and Risk Assessment Code (RAC) determined for all PVS in accordance with paragraph 4.9.2 of this standard.

4.9.1.4 The PSM has authority to specify the method and detail of risk analyses appropriate for each PVS, consistent with the requirements of paragraph 4.9.2 of this standard.

4.9.1.5 Planning of risk mitigation activities and residual risk analysis shall be performed and documented in the initial PVS certification or subsequent recertification to reduce or eliminate risks, and residual risks greater than the thresholds identified in paragraph 4.9.1.6 of this standard shall be accepted to the appropriate level as specified in paragraph 4.9.4 and NPD 8710.5.

4.9.1.6 The assessed risk of in-service PVS shall be no greater than RAC 3 after mitigation unless that risk is specifically approved and accepted in accordance with paragraph 4.9.4 of this standard.

4.9.1.7 The risk reduction protocol in paragraph 1.7.1 of NPR 8715.3, NASA General Safety Program Requirements applies.

4.9.1.8 Measures that reduce the risk classification shall be documented and tracked throughout the life of each PVS.

4.9.1.9 The PSM has authority to modify risk mitigation requirements or de-certify and remove from service any PVS that is not safe to operate.

4.9.1.10 Reserved

4.9.1.11 System safety documentation shall be as specified throughout this standard and shall be maintained within the PVS configuration management system at each Center.

4.9.1.12 The PSM shall identify each PVS change that potentially affects the baseline risk assessment throughout the life of the PVS and take appropriate actions to analyze, plan, track, and control the risks associated with each change.
4.9.2 RAC Determination.

4.9.2.1 The level of risk shall be evaluated based on the likelihood of mishap and on the severity of the consequence.

4.9.2.2 The risk shall be categorized in accordance with Tables 1, 2, and 3.

Table 1. RAC Determination

<table>
<thead>
<tr>
<th></th>
<th>A Frequent</th>
<th>B Probable</th>
<th>C Occasional</th>
<th>D Remote</th>
<th>E Improbable</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Catastrophic</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>II Critical</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>III Moderate</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>IV Negligible</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

4.9.2.3 The RAC is a numerical expression of comparative risk determined by an evaluation of both the potential severity of a condition and the likelihood of its occurrence causing an expected consequence. RACs are assigned a number from 1 to 7 in a risk matrix. The PSM may approve alternative risk determination methods.

4.9.2.4 Severity is an assessment of the worst potential consequence, defined by degree of injury or property damage, which could occur.

4.9.2.5 The severity classifications are defined in Table 2.

4.9.2.6 Probability is the likelihood that an identified hazard will result in a mishap, based on an assessment of such factors as location, exposure in terms of cycles or hours of operation, and affected population.

4.9.2.7 Examples of calculation of the probability estimation are shown in paragraph 4.9.3.5 of this standard.
### Table 2. Severity Determination Table

<table>
<thead>
<tr>
<th>Class</th>
<th>Class Description</th>
<th>Equipment Loss(^1) ($K)</th>
<th>Downtime(^1)</th>
<th>Data Integrity(^1)</th>
<th>Environmental Effect(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Catastrophic A condition that may cause death or permanently disabling injury, facility destruction on the ground, or loss of crew, major systems, or vehicle during the mission.</td>
<td>$2,000 ≤ x</td>
<td>&gt; 4 months</td>
<td>Data Not recovered</td>
<td>&gt; 5 years or &gt;$2M to correct</td>
</tr>
<tr>
<td>II</td>
<td>Critical A condition that may cause severe injury or occupational illness or major property damage to facilities, systems, equipment, or flight hardware.</td>
<td>$500 ≤ x &lt; $2000</td>
<td>4 months to 2 weeks</td>
<td>Repeat program</td>
<td>1-5 years or $500K ≤ x &lt; $2M to correct</td>
</tr>
<tr>
<td>III</td>
<td>Moderate A condition that may cause minor injury or occupational illness or minor property damage to facilities, systems, equipment, or flight hardware.</td>
<td>$50 ≤ x &lt; $500</td>
<td>2 weeks to 1 day</td>
<td>Repeat test period</td>
<td>&lt; 1 yr or $50K ≤ x &lt; $500K to correct</td>
</tr>
<tr>
<td>IV</td>
<td>Negligible A condition that could cause the need for minor first aid treatment though would not adversely affect personal safety or health. A condition that subjects facilities, equipment, or flight hardware to more than normal wear and tear.</td>
<td>&lt;$50</td>
<td>&lt; 1 day</td>
<td>Repeat test point</td>
<td>Minor or &lt; $50K to correct</td>
</tr>
</tbody>
</table>

\(\text{The values and ranges are considered default values and ranges and may be adjusted based on actual data.}\)

4.9.3 Default Equipment Failure Probability Estimates.
4.9.3.1 The equipment failure probability estimates of Table 4 shall be applied only to certified PVS.

4.9.3.2 Without further information on a specific PVS complying with the certification requirements of this standard, the default values of Table 3 shall be used as the equipment failure probability in the RAC determination of paragraph 4.9.2.

Table 3. Probability Determination Table

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Qualitative</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Frequent</td>
<td>Likely to occur immediately</td>
<td>X &gt; 10⁻¹</td>
</tr>
<tr>
<td>B</td>
<td>Probable</td>
<td>Probably will occur in time</td>
<td>10⁻¹ ≥ X &gt; 10⁻²</td>
</tr>
<tr>
<td>C</td>
<td>Occasional</td>
<td>May occur in time</td>
<td>10⁻² ≥ X &gt; 10⁻³</td>
</tr>
<tr>
<td>D</td>
<td>Remote</td>
<td>Unlikely to occur</td>
<td>10⁻³ ≥ X &gt; 10⁻⁶</td>
</tr>
<tr>
<td>E</td>
<td>Improbable</td>
<td>Improbable to occur</td>
<td>10⁻⁶ &gt; X</td>
</tr>
</tbody>
</table>

4.9.3.3 The PSM has authority to modify the failure probabilities, without processing a waiver for specific systems covered by Table 4, provided one of the following is met: (1) failure data exists that is more relevant to the particular PVS, (2) analysis is performed and documented consistent with the principals of risk management found in NPR 8000.4, Agency Risk Management Procedural Requirements, (3) informed and conservative engineering judgment based on information relevant to the particular facts and condition of the PVS in question is exercised and documented.

Table 4. Tentative Catastrophic PVS Failure Rates per Year (Median Values) for Certified PVS

<table>
<thead>
<tr>
<th>Item</th>
<th>PVS Component Type</th>
<th>Equipment Failure Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>&gt;10⁻¹</td>
</tr>
<tr>
<td>1</td>
<td>Steel Pressure Vessels: (catastrophic failures) / (PV-yr)</td>
<td>10⁻⁶</td>
</tr>
<tr>
<td>2</td>
<td>Code vessels fabricated to pre-1987 ASME and operating lower than post-1987 MDMT with validated fracture life assessment</td>
<td>&gt;10⁻⁶</td>
</tr>
<tr>
<td>3</td>
<td>Code vessels derated due to safety requirements, Code equivalent FS retained</td>
<td>&gt;10⁻⁶</td>
</tr>
<tr>
<td>Item</td>
<td>PVS Component Type</td>
<td>Equipment Failure Probabilities</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;10⁻¹</td>
</tr>
<tr>
<td>4</td>
<td>Code vessels with FS less than original Code (e.g., due to degradation or fluid service changes)</td>
<td>&gt;10⁶</td>
</tr>
<tr>
<td>5</td>
<td>DOT container in static service, maintained under 49 CFR 180 with acceptable VT inspection</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Inactive DOT container more than 20 years beyond last 49 CFR 180 stamped retest date</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DOT container not maintained per 49 CFR 180. See notes for this item re: dual categories</td>
<td>FS ≤4 – case–by-case assessment required</td>
</tr>
<tr>
<td>8</td>
<td>Non-Code vessels fabricated as equivalent to ASME (operation older than 1987 meets post 1987 rules)</td>
<td>&gt;E-3 (older than post 1987 MDMT) – case-by-case assessment required</td>
</tr>
<tr>
<td>9</td>
<td>Non-Code vessels/non-Code equivalent</td>
<td>&gt;10⁶</td>
</tr>
<tr>
<td></td>
<td><strong>Steel Piping System:</strong> (Catastrophic Failures / Piping System-yr)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Small bore (NPS 4” and under) piping system (no double containment, sensors/alarms, etc.) – Small system (less than 75 ft. of pipe)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Small bore (NPS 4” and under) piping system (no double containment, sensors/alarms, etc.) – Large system (more than 75 ft. of pipe)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Large bore piping system (&gt; NPS 4”, non-intergranular stress corrosion cracking (IGSCC)) – Small system (less than 75 ft. of pipe)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Large bore piping system (&gt; NPS 4”, non-IGSCC) – Large system (more than 75 ft. of pipe) with failure modes that include thermal fatigue, fluid dynamic loads, or erosion/corrosion wall thinning as described in 6.2.11.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Degraded or non-Code piping systems</td>
<td></td>
</tr>
</tbody>
</table>
4.9.3.4 PVS failure probabilities shall be combined with exposure in terms of hours or cycles of operation and affected population in determining the likelihood that a failure will result in a mishap and the overall RAC.

4.9.3.5 The values in Table 4 represent the probability of failure, not the likelihood of consequence.

**Example 1:** Small bore piping system with personnel exposure 2 hours/24 hour work day, 5 day work week; PVS pressurized 24 hours/7 days a week:

**State Assumptions:**
Equipment failure Probability from Table 4. Item number 11: $1 \times 10^{-3}$ (catastrophic failures)/(PV-year)

Total hours pressurized per year: 52 weeks/year * 7 days/week * 24 hours/day = 8736 hours.

Exposure hours per year: 52 weeks/year * 5 days/week * 2 hours/day = 520 hours

**Exposure Fraction:**
Exposure hours per year/total hours pressurized per year: 520 hours/8736 hours = $5.9 \times 10^{-2}$

**Likelihood of Consequence to Personnel (ignores risk to equipment/facility):**
Equipment Failure Probability x Exposure Fraction: $1 \times 10^{-3} \times 5.9 \times 10^{-2} = 6 \times 10^{-5}$

This value ($6 \times 10^{-5}$) would then be used to determine the probability level (i.e., A, B, C, D, or E) from Table 3 by comparison of the value to the definition column and selecting the appropriate level. For this example, the level would be D, “Remote.”

This level is used in the RAC matrix (Table 1) with the severity determination of Table 2 to determine the RAC for the PVS.

**Example 2:** Small bore piping system PVS pressurized 24 hours/7 days a week with no personnel exposure (personnel are shielded or remote from hazard):

**State Assumptions:**
Equipment failure probability from Table 4. Item number 11: $1 \times 10^{-3}$ (catastrophic failures)/(PV-year)

Total hours pressurized per year: 52 weeks/year * 7 days/week * 24 hours/day = 8736 hours.

Exposure hours per year: 52 weeks/year * 5 days/week * 0 hours/day = 0 hours
**Exposure Fraction:**

Exposure hours per year/total hours pressurized per year: 0 hours/8736 hours = 0

**Likelihood of Consequence to Personnel (ignores risk to equipment/facility):**

Equipment Failure Probability x Exposure Fraction: \(1 \times 10^{-3} \times 0 = 0\)

Probability Level: E, “Improbable”

4.9.3.6 For PVS whose design life is limited by fatigue or brittle fracture failure mode, and whose life has been extended through the application of NDE, in order to consider the potential for NDE to miss existing crack-like flaws, the probability of failure shall be increased by a minimum of one level from Table 4 (i.e., an original level E \(10^6\) becomes a level D \(10^{-3}\) to \(10^{-6}\)). (Successive life extensions need not result in repeated increases in assumed failure probability.)

4.9.3.7 Severity class assessment shall include consideration of the worst credible consequence due to residual risk for all failure modes.

4.9.3.8 Where Table 4 requires that a specific failure assessment be performed, that assessment shall consider the particular facts and condition of the PVS in question and be based on either: (1) analysis consistent with the principles of risk management found in NPR 8000.4, Agency Risk Management Procedural Requirements, or (2) informed and conservative engineering judgment that is approved and documented by the PSM.

4.9.3.9 Failure probabilities of PVS not included in Table 4 (e.g., plastic pipe systems) shall be specified by the PSM based on one of the following: (1) qualitative or quantitative data relevant to the PVS in question, (2) analyses performed consistent with the principles of risk management found in NPR 8000.4, Risk Management Procedural Requirements, or (3) informed and conservative engineering judgment that is documented.

4.9.4 Waiver.

4.9.4.1 The rationale and acceptance of waivers must be objectively reviewed, evaluated, and documented.

*Note: NASA does not have approval authority for waivers to Federal, State, or local regulations (e.g., OSHA, Cal OSHA), nor to consensus standards that are required by Federal regulations (e.g., ANSI, American Conference of Governmental Industrial Hygienists (ACGIH)) that apply to NASA. Any waiver of a Federal, State, or local regulation must be reviewed by NASA Headquarters Office of Safety and Mission Assurance prior to submittal by the Designated Agency Safety and Health Official to the appropriate Federal/State/local agency for approval.*

4.9.4.2 Policy Waivers.
4.9.4.2.1 A policy waiver shall be used when a Center policy varies from NPD 8710.5 or when Center policy varies from any “shall” statement in this standard.

4.9.4.2.2 Policy waivers shall be approved in accordance with NPR 8715.3, NASA General Safety Program Requirements and NASA-STD-8709.20, Management of Safety and Mission Assurance Technical Authority (SMA TA) Requirements.

4.9.4.3 Technical Waivers.

4.9.4.3.1 A technical waiver shall be used to address case-by-case variations from requirements of this standard.

4.9.4.3.2 Technical waivers shall be prepared in accordance with NPD 8710.5.

4.9.4.3.3 Technical waivers shall be reviewed and approved in accordance with Table 5, Technical Waiver Approval Process.

<table>
<thead>
<tr>
<th>Table 5. Technical Waiver Approval Process</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RAC 1 &amp; 2</strong></td>
</tr>
<tr>
<td>Headquarters notification</td>
</tr>
<tr>
<td>Center Director Approval</td>
</tr>
<tr>
<td>Safety and Mission Assurance Director Approval</td>
</tr>
<tr>
<td>PSM</td>
</tr>
<tr>
<td>Program Manager/Owner</td>
</tr>
</tbody>
</table>

4.10 Requirements for Specific Components

4.10.1 PRDs.

4.10.1.1 The location, design, operating parameters, last test date, and due date for reclosable PRDs on each in-service PVS shall be documented in the PVS configuration management system.

*Note: Redundant PRDs used only for operational pressure control below the MAWP of the PVS are not subject to this requirement, provided the system is otherwise protected in accordance with the requirements of the applicable NCS.*

4.10.1.2 Non-reclosable PRDs shall meet the requirements of paragraph 4.10.1.1 of this standard with the exception of test date and due date.

4.10.1.3 Overpressure protection for PVS shall be in accordance with the applicable NCS.

4.10.1.4 Overpressure protection devices for PVS rated less than 15 psig shall have adequate relief capacity and set pressure tolerance.
4.10.1.5 The accuracy of the pressure set point of PRVs shall be periodically retested, or the PRVs shall be replaced. Unless the provisions of paragraph 4.10.1.7 of this standard apply, the following retest intervals shall be used, consistent with the guidance of NB-23, Part RB:

*Note: PRD requirements for low pressure dewars and hydraulic systems are addressed separately in sections 4.2.3.23 and 4.10.1.13.*

4.10.1.5.1 Steam systems – annually.

4.10.1.5.2 Gas systems above 200 psi MAWP – 3 years.

4.10.1.5.3 PRVs in combination with rupture disks – 5 years.

4.10.1.5.4 Category M, corrosive, flammable, or toxic fluid systems – 2 years.

*Note: This paragraph is not directly from NB-23.*

4.10.1.5.5 All others – in accordance with Center procedures, but no more than 5 years.

4.10.1.6 Rupture disks need not be replaced periodically provided their vent spaces are inspected and confirmed unrestricted (e.g., free of debris) at the intervals listed above for PRVs.

*Note: Because the normal failure of rupture disc is to fail below rated burst pressure, if it has been determined that such a failure will not result in an increased risk, manufacturer’s recommended replacement periods may be increased.*

4.10.1.7 As objective evidence is collected on the operation of a specific PRV in a specific service, the PRV periodic retest may be extended as approved by the PSM, but to a total of no more than five years, or reduced.

4.10.1.8 Adjustments and repairs to code-stamped PRVs shall comply with the applicable NCS.

4.10.1.9 Adjustments and repairs to non-Code PRVs shall comply with the applicable NCS to the extent possible.

4.10.1.10 Pressure regulators or back pressure regulators shall not be used to provide overpressure protection to a PVS.

4.10.1.11 Pressure safety relief valves shall be used in accordance with the applicable ASME code of construction.

4.10.1.12 PVS with an MAWP of less than 15 psig including vacuum systems charged from internal or external gas sources shall have appropriate PRD protection. Code stamped PRDs are generally not available with ratings less than 15 psig. Therefore, these low-pressure PVS may be protected with non-Code/nonconventional PRDs such as check valves with known
cracking pressures or lift disks whose relieving pressure depends solely on the weight of the disk. Such nonconventional PRDs are subject to all other applicable requirements of this paragraph, including periodic retesting.

4.10.1.13 PRDs on liquid withdrawal devices (LWD) installed on low pressure (less than 15 psig) COTS, portable non-DOT cryogenic dewars shall be:

4.10.1.13.1 Included in the PVS certification process specified in paragraph 4.3.3.1,

4.10.1.13.2 Inspected frequently by the user to ensure that there is no ice buildup,

4.10.1.13.3 Checked for functionality and set pressure at intervals of no greater than five years (for more frequent testing, in place functionality test without removal from the LWD by manually lifting the deflector cap (using appropriate personal protective equipment is acceptable, or the PRD may be removed for bench testing or replacement.),

4.10.1.13.4 Installed, or reinstalled, following the manufacturer’s instructions so as not to over-tighten the threaded connection to the LWD (such over-tightening has been shown in some cases to bind internal parts and render the PRD inoperative.),

4.10.1.13.5 Tested for functionality and set point opening pressure after installation or reinstallation,

4.10.2 Safety-Related Switches and Pressure-Indicating Devices.

4.10.2.1 When pressure-indicating devices or pressure or temperature switches exist on a pressure system to provide safety and hazard information to personnel, critical operational information to operators or control systems, or to document compliance with Code test pressures, they shall be considered safety-related devices and shall meet the requirements listed below.

4.10.2.1.1 The location and last test date of all safety-related pressure-indicating devices and pressure or temperature switches shall be documented in the PVS configuration management system.

4.10.2.1.2 Safety-related pressure-indicating devices shall meet an appropriate NCS, such as ASME B40.100, UL 404, or MIL-G-18997.

4.10.2.1.3 The accuracy of all safety-related pressure indicators shall be periodically verified by means of a Center-approved procedure at an interval no less frequent than that required for PRDs on the same system.

4.10.2.1.4 The minimum acceptable accuracy across the system design pressure range for each safety-related pressure indicator shall be in accordance with ASME B40.100 and the design specification.

4.10.2.1.5 If a catastrophic failure of a gauge can cause personnel injury, the pressure gauge shall be equipped with a relief case.
4.10.3 Pressure Regulators.

4.10.3.1 Pressure regulators used to control pressure of gases supplied from compressed gas cylinders or portable tanks shall comply with OSHA regulations in 29 CFR 1910, particularly section 101, and by citation, CGA P-1 (in particular paragraphs 5.9.7 and 5.9.8).

4.10.3.2 PVS downstream of pressure regulators shall either be certified for the MAWP of the pressure source, or appropriate PRDs to accommodate a full open regulator failure shall be included in the PVS installation to preclude the possibility of the downstream pressure exceeding the MAWP or placard rating of the lowest rated component, except as provided in paragraph 4.10.3.3 of this standard.

4.10.3.3 When the PSM concurs that the use of PRDs is not feasible downstream of a regulator (such as due to venting or purity constraints), and if there are no pressure vessels downstream of the regulator, a pressure regulator certified in accordance with CGA Standard E-4 may be used in lieu of a certified PRD (since it precludes the possibility of downstream pressurization to a demonstrated high degree of reliability), provided its full-open discharge pressure does not exceed the placard rating of the lowest rated downstream element or component, and provided the regulator has been inspected and maintained in accordance with CGA E-4 and pressure tested within the past five years.

4.10.4 Flexible Hoses.

4.10.4.1 Flexible hoses that may subject personnel to a whipping hazard in the event of end connection failure shall have their ends restrained.

4.10.4.2 Flexible hoses whose rupture would cause unacceptable hazard to personnel shall have sufficient intermediate restraint at appropriate intervals along their lengths to mitigate the hazard.

4.10.4.3 Flexible hoses shall be assembled as directed by the manufacturer’s requirements and tested in accordance with the applicable NCS.

4.10.4.4 Flexible hoses whose rupture would cause unacceptable hazard to personnel or risk to mission shall be retested at the flexible hose MAWP no less frequently than every 5 years.

4.10.4.5 Flexible hoses shall not be used in PVS in lieu of rigid piping or tubing unless the use of rigid piping or tubing has been determined to be impractical (such as where vibration isolation, motion allowance, or component flexibility requires their use).

4.10.4.6 A flexible hose that is permanently installed by welding or brazing shall be included as part of the PVS inspection and testing requirements, and the retest requirement of paragraph 4.10.4.4 does not apply.

4.10.4.7 A flexible hose exhibiting major defects as classified in SAE ARP 1658B, shall be removed from service.
4.10.5 View Ports in PVS (including sight glasses and liquid level indicators).

4.10.5.1 View ports shall be treated as hazardous, and hazard mitigation steps shall be employed to ensure the safety of personnel from brittle failures.

4.10.5.2 For materials in the brittle range, the Code-equivalent FS on breaking strength for view ports shall be 10, or as recommended by the manufacturer subject to approval by the PSM.

4.10.5.3 A view port shall be initially pressure tested in accordance with the applicable NCS for the PVS in which it is installed.

4.10.5.4 Fluid compatibility shall be considered during view port testing.

4.10.5.5 The initial pressure test may be performed with the view port installed in the PVS or in a fixture duplicating the installed loads.

4.10.5.6 View ports shall have an engineering assessment performed (including view port cycle life and ambient noise effects) to determine the appropriate inspection period.

4.10.5.7 Retesting shall be performed if required by the engineering assessment in paragraph 4.10.5.6 of this standard.

4.10.5.8 View ports or windows on PVS shall be inspected visually annually for cracks, scratches, or other imperfections.

4.10.5.9 An engineering assessment shall be performed on the imperfections to disposition the findings.

4.10.6 DOT Containers.

4.10.6.1 General.

4.10.6.1.1 DOT containers used as stationary equipment shall be certified either as DOT cylinders or as non-Code vessels.

Note: This standard does not address the road worthiness of the trailer.

4.10.6.1.2 DOT specification cylinders that are used in non-DOT service, such as in refillable fixed installations, shall be certified as non-Code vessels with risk assessment, acceptance, and approval via the waiver process.

4.10.6.1.3 The DOT containers used in non-DOT service shall be certified based on the original DOT requalification intervals for the specific cylinder specification (reference Table 1 in 49 CFR 180.209(a) and 49 CFR 180.405).

Note: An uncertainty for consideration during certification is that not all DOT specifications are based upon ASME, ASTM, or other standard material specifications. Because of this, minimum assured material strength, toughness,
and fracture properties are usually not known, although individual cylinder tensile strength can sometimes be inferred if the original DOT design thickness is known. Thus, for any grouping of cylinders, there is generally no assurance of commonality in material properties from one cylinder to the next. It is therefore difficult to perform conservative fatigue and fracture analysis for remaining life calculations. For these reasons, and because they have lower material strength FS (see paragraph 4.10.6.2 below), DOT cylinders cannot generally be considered ASME equivalent.

4.10.6.2 If a DOT container is used as stationary equipment, and the owner has elected to certify the DOT container as non-Code PVS, the requirements below apply:

4.10.6.2.1 ASME Equivalent Derating – The original cylinder working pressure shall be de-rated for NASA use, based on equivalent stress ratio between DOT and ASME, to increase the material FS to be FS = 4 (or other appropriate FS applicable to the time and material of construction).

Note: For 3AA containers, the MAWP is 62% of the service rating stamped on a cylinder, calculated as follows. The test pressure maximum hoop stress is 67% of ultimate for 3AA cylinders (reference 49 CFR 178.37(f)(2)). The test pressure is also 5/3 the service rating (reference 49 CFR 178.37(i)(4)), which means that the stamped service pressure results in hoop stress of \((3/5)(.67) = 0.4\) times the ultimate stress (i.e., 2.5 normal safety factor on ultimate strength). In order for the hoop stress not to exceed 0.25 times the ultimate stress \((FS = 4)\), the service pressure must not exceed 62% of the rated new service pressure (MAWP) \([(0.62)(0.4)=0.25\]. Deratings for other containers are determined by applying similar data from 49 CFR 178, Subpart C.

4.10.6.2.2 Consideration shall be given to the service temperature and the potential change in material properties.

Note: Special Consideration is required for off-ambient temperature use of compressed gas cylinders because their ratings are only at ambient and material properties are typically not available.

4.10.7 Vessels Originally Not Designed for, but being used for Mobile Applications.

4.10.7.1 This paragraph applies to PVS that were not originally designed to meet DOT requirements and are used to transport material under pressure.

4.10.7.2 This type of PVS is prohibited by DOT regulations from use in transporting material on public thoroughfares or water ways.

4.10.7.3 An engineering evaluation shall be performed to document that the fixed vessel design meets the static and dynamic load requirements associated with transport and use as a mobile vessel.
4.10.7.4 This type of PVS shall be evaluated as “non-Code PVS” per paragraph 4.7 of this standard.

4.10.8 Laboratory Systems.

4.10.8.1 Laboratory systems and equipment shall meet the requirements of this standard, except as noted for DOT cylinders in 4.2.3.20, vendor COTS equipment in 4.2.3.14, and vacuum systems in 4.2.3.15. Specific component requirements are provided for gas pressure regulators in 4.10.3 and 4.10.1.10, and for flexible hoses in 4.10.4.

4.10.9 Hydraulic Systems.

4.10.9.1 Hydraulic pump discharge pressure relief valves may be considered as acceptable PRDs on hydraulic systems and may be tested in place for functionality and set pressure provided they meet the following criteria:

4.10.9.1.1 They are properly sized to relieve the maximum possible flow from the upstream hydraulic pump at the maximum allowable working pressure,

4.10.9.1.2 They have been verified for functionality,

4.10.9.1.3 They are tested at no more than 5 year intervals to verify that the set point has not drifted or been changed.

4.10.10 Ground Support Equipment.

4.10.10.1 This section applies to PVS classified as Ground Support Equipment (GSE). GSE includes non-flight equipment, systems, or devices specifically designed and developed for a direct physical or functional interface with flight hardware.

4.10.10.2 NASA-STD-5005 contains PVS requirements specific to GSE that apply in addition to the certification requirements of this standard (8719.17). In some cases the NASA-STD-5005 requirements are more stringent or otherwise more specific than the requirements of this standard (8719.17).

Note: For pneumatics above 1.14 MPa (165 psia), NASA-STD-5005 requires 100% radiography of welded joints, and contains specific requirements regarding flex hose construction; hypergolic systems include precautions to preclude mixing fuel and oxidizer; hydraulic systems have specific cleanliness requirements; certain materials and materials compatibility requirements are specified; etc.

4.11 Certification And Recertification Process

4.11.1 Required Inspections and Assessments.

4.11.1.1 Prior to initial certification or recertification, a comprehensive integrity assessment shall be performed in accordance with paragraph 4.8.1 of this standard.
4.11.1.2 Prior to certification or recertification, initial service life and remaining life shall be determined in accordance with paragraph 4.8 of this standard.

4.11.1.3 Prior to certification or recertification, a periodic inspection plan shall be developed or updated in accordance with paragraph 4.8.3 of this standard and all appropriate inspections completed.

4.11.1.4 Prior to certification or recertification, a risk assessment shall be performed or updated in accordance with the requirements of paragraph 4.9 of this standard.

4.11.1.5 Prior to certification or recertification, all components that require periodic inspection or testing shall be current as required in paragraph 4.10 of this standard.

4.11.2 Certification and Recertification Triggers.

4.11.2.1 Disregard of maintenance or inspection shall be cause for revocation of the certification at the discretion of the PSM.

4.11.2.2 PVS shall be certified before entering service.

4.11.2.3 PVS shall be recertified on or before one-half the documented initial service life or one-half the recertified remaining life. In the event that operational or test needs place constraints on system availability for certification functions, the PSM may extend the certification period, without processing a waiver, by no more than the lesser of 5% of the safe remaining life or 180 days. Such extension shall be documented in the recertification configuration management system.

4.11.2.4 Recertification shall be performed when the PVS service changes (e.g., commodity, design parameters, location, and orientation).

4.11.2.5 Recertification shall be performed if any repair, alterations, or modifications are made to the PVS.

4.11.2.6 Recertification shall be performed as directed by the PSM in the case of NCS changes that reduce the estimated remaining life or increase the known risk of continued operation. (An example of this is the incorporation of fracture toughness requirements for MDMT in UCS-66 in 1987). (Refer to paragraphs 4.5.6 and 4.5.7 of this standard).

4.11.2.7 Recertification shall be performed if any unanticipated service degradation is identified that reduces estimated service life, changes probability of failure or failure modes, or changes the risk assessment.

4.11.3 Documentation Requirements.

4.11.3.1 Certification and recertification status and limitations, including any applicable waivers, shall be documented in the PVS configuration management system and made available to the owner organizations.
4.11.3.2 Documents and data that establish certification (or recertification) status and limitations shall be maintained and retrievable in the PVS configuration management system in accordance with NPR 1441.1, NASA Records Retention Schedule.

4.11.3.3 Formal notification of certification or recertification, including all applicable constraints and schedules, shall be made by the PSM to the owning organization and documented in the configuration management system.

4.11.4 Overdue Components Certification Status.

4.11.4.1 Except as provided in paragraph 4.11.4.2, if component tests specified in paragraph 4.10 of this standard are not completed within the prescribed interval, the PVS certification shall be revoked.

4.11.4.2 A waiver is required to extend the period of an overdue item past the interval prescribed in paragraph 4.10 of this standard except that the PSM may extend, without waiver, the in-service usage of specific components that require periodic testing for up to one year if they come due during critical operations, provided that all available evidence indicates that the components remain functional and that such an extension is not contraindicated by usage history. Such extension shall be documented, based on operational need or test constraints, and shall not be in violation of any applicable external regulations (e.g., OSHA) (see paragraph 4.11.2.3).

4.12 Operation and Maintenance Requirements

4.12.1 The owner shall operate PVS within the certification parameters.

4.12.2 The owner shall maintain change and modification records of PVS.

   Note: This may be used to identify problem components or PVS trends.

4.12.3 The owner shall provide to the PSM the data required to maintain certification status.

4.12.4 The owner shall promptly report to the PSM any PVS incidents or anomalies and shall perform corrective actions as required by the PSM.

4.12.5 The owner shall have certified and qualified personnel operating the system.

4.12.6 The owner shall collect operational data as required to support certification/recertification of PVS and provide the data to the PSM as required to facilitate certification/recertification.

   Note: Some areas of concern are cyclic operation, corrosion, erosion, and creep.

4.12.7 The owner shall operate and maintain boilers in accordance with recommendations of the boiler manufacturer, including water quality. In some cases, due to operational,
environmental, or other parameters, maintenance procedures in addition to the manufacturer’s recommendations may be necessary.

4.12.8 The owner shall maintain PVS and their components in accordance with the manufacturer’s recommendations or with a suitable maintenance plan to ensure continued compliance with the certification/recertification. In some cases, due to operational, environmental, or other parameters, maintenance procedures in addition to the manufacturer’s recommendations may be necessary.

4.12.9 The owner shall not operate PVS unless certified, except for inspection, examination, and testing as required by the NCS or the inspection plan.

4.12.10 The owner shall maintain weld filler rod and braze material as recommended by the manufacturer.

5. OTHER REFERENCES

The following table is provided for guidance as to applicable codes, standards, and laws. Actual applicability is to be determined by the PSM.

Table 6. Application of National Consensus Codes, Standards, and Laws to PVS

<table>
<thead>
<tr>
<th>PVS</th>
<th>Designed, Fabricated, Inspected, Tested, and Installed</th>
<th>Operated and Maintained</th>
<th>Repair, Alteration, Inservice Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfired Pressure Vessel</td>
<td>ASME BPVC Section VIII,</td>
<td></td>
<td>API 510, 572, 579, 580, 581 ANSI/NBIC NB-23</td>
</tr>
<tr>
<td>Process Piping</td>
<td>ASME B31.3</td>
<td></td>
<td>API 570, 576, 574, 579, 580, 581 ANSI/NBIC NB-23</td>
</tr>
<tr>
<td>Power Boiler</td>
<td>ASME BPVC Section I</td>
<td>ASME BPV Section VII</td>
<td>ANSI/NBIC NB-23</td>
</tr>
<tr>
<td>Heating Boiler</td>
<td>ASME BPVC Section IV</td>
<td>ASME BPV Section VI</td>
<td>ANSI/NBIC NB-23</td>
</tr>
<tr>
<td>Power Piping</td>
<td>ASME B31.1</td>
<td></td>
<td>ANSI/NBIC NB-23</td>
</tr>
<tr>
<td>DOT Cylinders and Cargo Tanks</td>
<td>49 CFR, 29 CFR 1910.101, CGA C-6, C-8, P-1, S-1.1, S-1.2</td>
<td>49 CFR, CGA C-6, C-8, P-1, S-1.1, S-1.2</td>
<td>49 CFR, 29 CFR 1910.101, CGA C-6, C-8, P-1, S-1.1, S-1.2</td>
</tr>
</tbody>
</table>

1 29 CFR 1910.6 contains a list of all referenced standards and the paragraph of application
2 49 CFR 171.7 contains a list of all material incorporated by reference and the paragraph of application
<table>
<thead>
<tr>
<th>PVS</th>
<th>Designed, Fabricated, Inspected, Tested, and Installed</th>
<th>Operated and Maintained</th>
<th>Repair, Alteration, Inservice Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigeration Piping</td>
<td>ASME B31.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Services and Piping</td>
<td>ASME B31.9</td>
<td></td>
<td>API 580, API 581, API -570, API -510</td>
</tr>
<tr>
<td>Risk Based Inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. BASIS FOR TABLE 4 VALUES

6.1 Basis for Table 4 Values

The following is a discussion of the basis for the Table 4, Tentative Catastrophic PVS Failure Rates per Year (Median Values) for Certified PVS. It provides an explanation of how the data from a literature search was translated into default values for failure rates. It is intended to provide understanding of the data to permit proper usage and to allow for appropriate modification if there is a better basis for a particular PVS. Appendix A References provide the sources referred to in this section.

6.1.1 Item 1: Post-1987 ASME Code Vessels.

6.1.1.1 ASME Code vessels manufactured post-1987 or older ASME vessels having original design MDMT equal to MDMT under post-1987 UCS-66 rules shall have an assigned failure rate of $1 \times 10^{-6}$ per year or less. The $1 \times 10^{-6}$ failure rate is based on statistics provided in each of the references listed above, under the assumption that the NASA vessels receive periodic inspection using multiple methods of surface and volumetric NDE each of which has a reasonable likelihood of detecting significant flaws or defects that could result in catastrophic failure if left undetected for the life of the vessel.

6.1.1.2 One acknowledged problem with the referenced data is that none of the failure data sufficiently specifies the types of failures that occurred, although it is clear that many reported failures involve non-catastrophic events. Distinction is made between disruptive and non-disruptive failures, but all disruptive failures are not catastrophic failures that result in significant injury or property damage. The NASA requirement is to identify the worst-case probability and consequence. Thus, leaks are generally not worst-case unless leak-before-burst is the specified worst-case failure mode. In the literature cited, it is generally not possible to distinguish worst-case failures from less severe failures. In addition, data presented in the referenced literature include much foreign data for vessels built to non-ASME standards over unknown time spans. Thus, the data are not directly relatable to ASME vessels, particularly those fabricated to current standards.

6.1.1.3 In addition, there is very limited information on how the failure rates have changed over time, although where such data exists, the rate appears to have declined as the
present is approached, with improvements being arguably related to Code, NDE, and manufacturing improvements.

6.1.1.4 Table 7 summarizes actual event (raw) “catastrophic” or “disruptive” failure rate data provided in S. H. Bush, “Statistics of Pressure Vessel and Piping Failures.” The 99% confidence data are also provided in Spencer H. Bush, "Pressure Vessel Reliability," but are not included in this assessment, which focuses on actual failures. The applicability of these industrial statistical data to NASA pressure vessels has not been qualified at this time and is presented only as the basis for the engineering judgment exercised in developing Table 1.

Table 7. Summary Catastrophic Failure Rate Data

<table>
<thead>
<tr>
<th>Source</th>
<th>Period</th>
<th>Rate (per vessel-year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Large Vessels, NB</td>
<td>Through 1979</td>
<td>26.0x10^{-6}</td>
</tr>
<tr>
<td>UK, Phillips &amp; Warwick</td>
<td>1962 – 1978</td>
<td>40.0x10^{-6}</td>
</tr>
<tr>
<td>F.R.G, IRS-TUV</td>
<td>1959 – 1964</td>
<td>18.3x10^{-6}</td>
</tr>
<tr>
<td>F.R.G, IRS-TUV</td>
<td>1965 – 1970</td>
<td>5.6x10^{-6}</td>
</tr>
<tr>
<td>F.R.G, IRS-TUV</td>
<td>1971 – 1976</td>
<td>2.1x10^{-6}</td>
</tr>
<tr>
<td>(F.R.G, IRS-TUV – all)</td>
<td>1959 – 1976</td>
<td>6.1x10^{-6}</td>
</tr>
<tr>
<td>US EEI-TVA</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>US EEI</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>F.R.G. – Kellerman et. Al.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>UK, Smith &amp; Warwick</td>
<td>16.0x10^{-6}</td>
<td></td>
</tr>
<tr>
<td>US – ABBMA</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Oberender</td>
<td>6.2x10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>

6.1.1.5 The data from Germany indicate the decreasing rate over time, presumably as manufacturing practices and NDE methods for in-service inspection improved. This could also be due in part to existing defects being corrected from leak testing.

6.1.1.6 From Spencer H. Bush, "Pressure Vessel Reliability," which originally analyzed in greater detail the summary data presented in S. H. Bush, “Statistics of Pressure Vessel and Piping Failures,” there is detailed discussion of how the 99% confidence level ranges are established when, in fact, there were no catastrophic failures in the U.S. population studied. Of significance to this assessment are the following statements:

6.1.1.6.1 “The expected probability may be significantly lower since the derived probability range is inferred from service data available, coupled with the observation of no occurrence of a disruptive failure event, and the use of a 99% confidence interval to determine the statistically inferred number of occurrences of disruptive failures.”

6.1.1.6.2 With regard to foreign data, many of the “failures” cited, because of their nature and locations, were probably generated during the fabrication stage and remained
virtually unchanged until detected during a periodic inspection; they did not directly interfere with functional use….Better terminology describing this data might be “defect statistics” rather than “failure statistics.”

6.1.1.6.3 On the value of periodic inspections, “Attempts to quantify the reduction in disruptive failure probabilities as a function of level of inspection are limited to studies on nuclear reactors … O’Neill and Jordan … considered the combined effects of acoustic emission, ultrasonic testing, visual examination, and leak detection in reducing failure probability. They concluded the combined effects reduced failure probability by a factor of 10 to 100. Cave and Holmes … cited a factor of about 100 between failure probability for no inspection versus full inspection and a factor of 10 for partial inspection, based primarily on the studies of Kellermann [9].” However, these documents do not formally establish the bases for these quantitative reductions in failure probabilities.

6.1.1.6.4 In “The Impact of Inservice Inspection on the Reliability of Pressure Vessels and Piping,” Bush states “O’Neil and Jordan … attempted to quantify failure probability in terms of the probability of gross vessel rupture occurring between service inspections by a formula weighting the various inspections…[based on various NDE and manufacturing factors failing to detect or prevent failure – ed.].” They calculated the probability of catastrophic failure to be 0.8x10^-6 per vessel-year using the same U.S. failure data.

6.1.1.7 Conclusion - Based on this information, NASA’s ASME Code vessels with post-1987 MDMT design, subjected to recertification and periodic inspection in accordance with this standard may be assumed to experience a failure rate of 1x10^-6 per vessel year.

6.1.2 Item 2: Pre-1987 ASME Vessels with Invalid Current MDMT.

6.1.2.1 With the 1987 UCS-66 rule change for MDMT determination, it became apparent that many thick wall pre-1987 ASME vessels operate below the actual transition temperature of the metal and would have an MDMT under post-1987 rules significantly higher than indicated on their “U” stamp nameplate. Such vessels would have a brittle fracture failure mode that was not recognized in original design, which could potentially be the worst-case failure mode.

6.1.2.2 If pre-1987 vessels operate at temperature below their post-1987 MDMT, but have had service life determined using the Code fracture mechanics technique, are recertified at no more than ½ the calculated fracture life, and have comprehensive NDE applicable to finding relevant cracks as the basis for recertification, then it is reasonable to assume that the failure rate will be greater than standard code compliant vessels, but not excessively so. Therefore, the assigned failure rate is one category greater than Item 1, or Category D.

6.1.3 Item 3: Derated vessels – Retained Code FS.

If vessels originally constructed to Code experience service-related degradation (e.g., wall thinning) negating their original Code certification, and pressure or temperature derating must be implemented to regain their original code FS, then it is assumed that the probability of failure will be one category more frequent than for standard code compliant vessels. This assumes some
active degradation mechanism that may cause additional undetected damage, or may accelerate before further mitigation.

6.1.4 Item 4: Code vessels with less-than Code FS.

6.1.4.1 If Code vessels have suffered degradation such as wall thinning, but are continuing to operate at their original ratings, they are operating with a FS less than required by Code. Depending on the nature and extent of the degradation and the actual FS experienced, the failure probability will increase a little or a lot. In these cases, a specific failure analysis will be required. In no case may the failure rate be assumed to be less than Category D, and it may be substantially more frequent.

6.1.5 Item 5: DOT containers with current 49 CFR 180 certification.

6.1.5.1 It is assumed that DOT gas cylinders that are in acceptable condition per OSHA/CGA visual inspection criteria and are maintained under 49 CFR 180, and that are not transported or refilled by NASA, will have failure rates equivalent to current ASME Code vessels. Data available on the DOT/RSPA website (http://hazmat.dot.gov/pubs/inc/data/2005/2005frm.htm), which includes all fluid releases, clearly shows that there are many failures annually, but determining what data is relevant to NASA is difficult. In 2005 (through November) for example, 9330 hazardous materials incidents were reported (11,808 in 2004), but only 13 involved “burst or rupture” failures due to “deterioration or aging” of containers. Since the total population of packages is unknown, or how many were compressed gases, it is unknown what the relevant failure rate is. Also, these failures occurred during some phase of transportation or periodic retesting rather than spontaneously in the field. The only deaths due to failure of non-bulk containers in the DOT database were those associated with the Value Jet crash in 1996 (failed oxygen generation cylinders).

6.1.5.2 The population size that resulted in the above noted 9330 incidents for 2005 is unknown, but it represents the total number of components regulated by the DOT. Also, the incidents included in the raw data include such things as finding undocumented pressure containers being shipped on aircraft (no failure involved). If no more than 1 in 1000 pressure cylinders are involved in the reported incidents (i.e., an incident rate of .001 for the total population, which seems very conservative), then the catastrophic failure rate (13 burst failures) for the population would be 1x10^-6. Therefore, an assigned failure rate of 1x10^-6 for in-service static DOT containers is judged to be suitable for this standard.

6.1.6 Item 6: Inactive DOT cylinders more than 20 years since last retest.

6.1.6.1 Pressurized DOT cylinders in storage that are more than 20 years since their last 49 CFR 180 retest are generally more likely to have been subjected to corrosion due to environmental factors. Such cylinders may be reasonably assumed to have a higher risk of failure than recently maintained cylinders and are assigned Level D probability unless they are demonstrated to be corrosion free and are stored indoors.

6.1.7 Item 7: DOT containers not maintained per 49 CFR 180.
6.1.7.1 DOT containers have substantially lower FS than required by ASME (typically 3 or less). If they are not periodically retested per part 49 CFR 180, they become non-Code vessels. Regardless of their derated pressures or extent of NDE for recertification, NASA requires that their risk of failure be assumed at least one level more frequent than for those that continually comply with part 49 CFR 180. Based on the condition of the particular containers and service applied, the risk could be substantially higher, and must be evaluated by the PSM. Thus, the minimum failure risk level is listed as two values. If such containers are derated to equivalent ASME MAWP with FS ≥ 4, then the probability level may be assumed no less frequent than Category D. If service pressure is rated any higher than the equivalent ASME MAWP (i.e., FS < 4), then the probability level can be no less frequent than Level C, and a case-by-case assessment is needed.

6.1.8 Item 8: Non-Code vessels equivalent to ASME.

6.1.8.1 NASA’s fundamental assumption about non-Code pressure vessels is that they are less safe than Code compliant vessels. If new non-Code vessels are designed and fabricated in a manner fully equivalent with current ASME Code and the only noncompliant feature is a missing U-stamp, but all aspects of the vessel and its production met Code equivalent quality assurance (QA) and quality conformance/compliance (QC) standards, and the FS no less than current Section VIII, Div. 1 (FS = 3.5 since 1998), and using post-1987 material fracture toughness rules, then the failure probability may be assumed to be only one level more frequent (i.e., D) than for fully compliant Code vessels. For new non-Code vessels where the only non-compliance is a missing U-stamp, and meeting all of the following requirements, the failure probability may be assumed to be only one category more frequent (i.e., D) than for fully compliant Code vessels: (1) designed and fabricated in a manner fully equivalent with current ASME Code, (2) all welds and processes met Code equivalent QA and QC standards, (3) the FS is no less than current Section VIII, Div. 1 (FS=3.5 since 1998), and (4) using post-1987 fracture toughness rules.

6.1.8.2 Non-Code vessels designed and fabricated as Code equivalent using pre-1987 toughness rules but which are limited to operate above the post-1987 MDMT may also be assumed to be Level D.

6.1.8.3 Non-Code vessels designed and fabricated as Code equivalent using pre-1987 toughness rules but which operate below their post-1987 MDMT shall be assumed to have failure Level no less than C, although in most cases a specific assessment will be required.

6.1.9 Item 9: Non-code vessels/non-code equivalent.

6.1.9.1 Non-Code vessels that do not meet Code equivalent standards are assumed to have inherently greater risk of failure and present greater hazard to personnel than Code or Code equivalent vessels. In most cases specific analysis and hazard mitigation features will be required, although designs with substantial excess margins of safety may be assumed to be no less frequent than Level D.

6.1.10 Item 10 and 11: Small Bore Piping Systems (less than NPS 4).
6.1.10.1 Based on the information presented in “Statistics of Pressure Vessel and Piping Failures” by Spencer Bush in 1988, the incidence of disruptive failures of small bore piping systems is substantially greater than for large bore systems, with vibration fatigue and lack of attention playing significant roles in those failures. He also points out that many failures are not reported in small lines, particularly in instrument lines and secondary systems. Therefore, the reported statistics are likely not conservative.

6.1.10.2 In addition, although the failure rates are reported for nuclear plants, much of the data are based on industrial piping considered relevant to nuclear. The data are also reported on two bases – per reactor (system) year and per year per foot of pipe. The recommended median failure probability per system per year is $1 \times 10^{-3}$, while the per-year-foot rate is $1.3 \times 10^{-5}$. Since the probability is dependent on quantity of piping, and since Table 4 is based on annual probabilities, entries for both small piping systems (less than 75 linear ft. of small bore pipe) and large piping systems (more than 75 linear ft.) are shown as Level D and Level C respectively.

6.1.10.3 Brown, Sundararajan & Short, “Pipe Risk Analysis: A Case Study,” discusses a risk analysis based on a small bore failure rate probability of $8.87 \times 10^{-3}$ (large system, Level C per Table 1) obtained from Gulf Oil data for a reference 70 weld, ½ inch carbon steel, 673 ft. long system. Risk reduction strategies that were studied to reduce the failure probability include improved Inservice Inspection (ISI) (factor of 10 improvement for large bore, less for small bore – assumed to be 5) and double containment with sensors and alarms, which reduced failure probability to $1.2 \times 10^{-5}$.

6.1.11 Item 12 and 13: Large Bore Piping Systems (equal to or greater than NPS 4).

6.1.11.1 Bush, “Statistics of Pressure Vessel and Piping Failures,” also reports large bore piping failure statistics in terms of nuclear piping reliability, but also based on industrial piping experience. It is notable that Intergranular Stress Corrosion Cracking (IGSCC) near weldments in austenitic stainless steel in boiling water reactors nuclear plants causes an order of magnitude increase in catastrophic failure probability vs. systems where IGSCC is not a significant failure mode. Table 4 excludes consideration of IGSCC, induced failure, but if specific NASA large bore piping systems are susceptible to IGSCC, the failure rate must be increased by one order of magnitude.

6.1.11.2 Significant failure modes in large bore piping are thermal fatigue in feed water piping, fluid dynamic loads (water hammer, jets), and wall thinning (erosion, wet steam erosion-cavitation, single phase erosion-corrosion/flow accelerated corrosion). The recommended median rupture failure probability is $1 \times 10^{-4}$ per system year, while the per-ft-year rate is reported as $1.3 \times 10^{-5}$. Therefore, as for small bore systems, entries are shown for both small and large quantity systems.

6.1.11.3 Brown, Sundararajan & Short, “Pipe Risk Analysis: A Case Study,” also discusses an NPS 8 pipe identical otherwise to the NPS ½ system discussed above in paragraph 6.1.10. For the 673 ft reference pipe system, the nominal failure probability for fluid releases per year due to weld failure was deduced to be $2 \times 10^{-3}$. This could be reduced by a factor of 10 through use of enhanced ISI, and by an additional factor of 2 by the use of stainless steel rather
than carbon steel, with a resulting failure probability of $1 \times 10^{-4}$ per year. Thus, large bore piping systems with substantial footage require enhanced ISI as a minimum to fall within the Level D range for NASA assessment.

6.1.12 Item 14: Degraded and Non-Code Piping Systems.

6.1.12.1 The above listed failure rates presume systems that obtain industry standard maintenance and inspection. If piping systems are operated with known significant deficiencies due to service or environmentally induced degradation or due to design inadequacies, their failure rates must be assumed to be more frequent than for Code compliant piping fit for service. Generic probability assignment on such systems would be difficult to perform due to the age of components and system uncertainties. Therefore, a case-by-case assessment is required for such systems.
APPENDIX A. REFERENCES

A.1 Purpose

A.1.1 The following documents provide guidance and are considered to be useful as background information for the reader in understanding the subject matter but do not constitute requirements of the standard (Note, however, that compliance with the regulatory documents is required by law.).

A.1.2 Government Documents

42 U.S.C. 2473(c)(1) Section 203(c)(1) of the National Aeronautics and Space Act of 1958, as amended

29 CFR Part 1960 DOL, OSHA, Basic Program Elements for Federal Employees

NPR 8715.4 Inservice Inspection of Ground-Based Pressure Vessels and Systems (Withdrawn)

NPR 8831.2 Facilities Maintenance and Operations Management

NHB 1700.6 Guide for Inservice Inspection of Ground-Based Pressure Vessels and Systems

NMI 1710.3D (1994) Safety Program for Pressure Vessels and Pressurized Systems (Withdrawn)


A.1.3 Non-Government Documents

MIL-G-18997 Gauge, Pressure, Dial Indicating

ASME PTC 25-2014 Pressure Relief Devices

UL 404 Gauges, Indicating Pressure, for Compressed Gas Service

A.1.4 The References listed below apply to Table 4 in Chapter 4 and are subject to applicability by determination from the PSM (not necessarily cited in the body of the document).


Bush, Spencer H. Pressure Vessel Reliability, presented at the Transactions of the ASME, February 1975


A.1.5  See Table 6 in Chapter 5 for other References.
APPENDIX B. PSM RECOMMENDED MINIMUM QUALIFICATIONS

B.1 Purpose

This appendix provides recommended minimum qualifications for the position of PSM for guidance to Centers to help ensure that the PSM possesses those capabilities necessary to the effective fulfillment of his/her responsibilities.

B.2 Background

B.2.1 The function of the Pressure Systems Manager (PSM) is to act as the Center lead and Technical Authority in managing risk to people, facilities, mission success, and the environment posed by ground-based pressure vessels and pressurized systems (PVS) as established in NP D 8710.5 and NASA STD 8719.17.

B.2.2 In addition to a number of specific functions, the PSM is to serve as the SMA Technical Authority for ground-based PVS, making and implementing policy, and providing recommendations to the Center Director and others regarding management of risk.

B.3 Recommended Minimum Attributes

The following represent the recommended minimum attributes for this position:

B.3.1 Education and experience (or demonstrated equivalent):

B.3.1.1 BS degree in mechanical, civil, structural, or aerospace engineering,

B.3.1.2 Ten years combined experience in the design, operation, maintenance, or repair of pressure vessels and/or pressure piping systems, and

B.3.1.3 Five years of experience managing projects.

B.3.2 Knowledge requirements:

B.3.2.1 Thorough understanding of:

B.3.2.1.1 ASME stress analysis, including pressure, external, thermal, dynamic loadings, etc.,

B.3.2.1.2 Statics and dynamics,

B.3.2.1.3 Fracture Mechanics,

B.3.2.1.4 PVS fabrication, welding, inspection, etc. techniques and processes,

B.3.2.1.5 PVS failure modes and damage mechanisms, and the NDE techniques and analyses that are used to identify precursors to those failure modes and to determine acceptable limits on operations so as to avoid them.
B.3.2.2 Knowledge of ASME and other PVS Codes and standards, related Occupational Safety and Health Administration (OSHA) and Department of Transportation (DOT) regulations, and NASA policies, requirements, and procedures associated with PVS.

B.3.3 Ability to:

B.3.3.1 Advise the Center Director, the Contracting Officer, and other management and project management personnel on PVS issues, including budgets, procurements, certification and training requirements, operations, disposition of requests for relief from requirements (“waivers”), etc.,

B.3.3.2 Represent the Center on the Agency-wide Pressure Systems Managers Working Group and to the Headquarters Office of Safety and Mission Assurance,

B.3.3.3 Develop and maintain Center PVS policies,

B.3.3.4 Plan and manage the Center PVS program, including developing budgets, schedules, a certification program, and work plans in order to manage risk associated with Center pressure systems,

B.3.3.5 Function as Center SMA Technical Authority (TA) for PVS, including decisions regarding systems safety,

B.3.3.6 Work effectively with other high level Center technical and management personnel,

B.3.3.7 Communicate effectively, both verbally and in writing, in technical and project management scenarios,

B.3.3.8 Develop and/or review and assess PVS designs, drawings, and procurement specifications and statements of work for clarity, accuracy, and compliance with applicable requirements, and provide approval/disapproval recommendations to Center management,

B.3.3.9 Assess and document PVS for adequate design and quality for the intended function, and ensure their fitness for service and safety for continued operation in accordance with the requirements of NASA STD 8719.17.

B.3.3.10 Access PVS in the field for inspection and assessment as needed,

B.3.3.11 Incorporate results of field inspections and assessments of service related degradation and accumulated cyclic fatigue/fracture damage into PVS certification decisions,

B.3.3.12 Fulfill all of the roles and responsibilities delineated in NPD 8710.5

B.3.4 Be conversant with the Federal procurement process, NASA and Center standards, directives, and processes, and hazard analysis processes.
**APPENDIX C, INDEX**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed Hazard Exclusion</td>
<td>22</td>
</tr>
<tr>
<td>Boilers</td>
<td>27</td>
</tr>
<tr>
<td>Category Exclusions</td>
<td>18</td>
</tr>
<tr>
<td>Certification and Recertification, Triggers</td>
<td>48, 49</td>
</tr>
<tr>
<td>Code stamped items</td>
<td>28</td>
</tr>
<tr>
<td>Conflicts</td>
<td>11</td>
</tr>
<tr>
<td>Contracts</td>
<td>11</td>
</tr>
<tr>
<td>Default Equipment Failure Probability Estimates</td>
<td>37</td>
</tr>
<tr>
<td>Documentation Requirements</td>
<td>49</td>
</tr>
<tr>
<td>DOT</td>
<td>20, 25, 32</td>
</tr>
<tr>
<td>DOT Containers Used as Stationary Equipment</td>
<td>46</td>
</tr>
<tr>
<td>Flexible Hoses</td>
<td>45</td>
</tr>
<tr>
<td>Heating boilers</td>
<td>27</td>
</tr>
<tr>
<td>Inservice inspection</td>
<td>29</td>
</tr>
<tr>
<td>Inspection Requirements</td>
<td>34</td>
</tr>
<tr>
<td>Non-Code PVS</td>
<td>29</td>
</tr>
<tr>
<td>NPD 8710.5</td>
<td>11, 18, 23, 31, 35, 42, 62, 63</td>
</tr>
<tr>
<td>OSHA</td>
<td>18, 21, 23, 24, 30, 41, 45, 50, 56, 60, 63</td>
</tr>
<tr>
<td>Overdue Components Certification Status</td>
<td>50</td>
</tr>
<tr>
<td>Owner</td>
<td>16</td>
</tr>
<tr>
<td>Policy Waivers</td>
<td>41</td>
</tr>
<tr>
<td>Pressure Regulators</td>
<td>45</td>
</tr>
<tr>
<td>Pressure Relief Devices (PRDs)</td>
<td>42</td>
</tr>
<tr>
<td>Pressure Vessels</td>
<td>25</td>
</tr>
<tr>
<td>Probability</td>
<td>36</td>
</tr>
<tr>
<td>Process piping</td>
<td>27</td>
</tr>
<tr>
<td>PV/S Integrity Assessment</td>
<td>32</td>
</tr>
<tr>
<td>RAC Determination</td>
<td>36</td>
</tr>
<tr>
<td>Remaining Life Assessment Requirements</td>
<td>32</td>
</tr>
<tr>
<td>Required Inspections and Assessments</td>
<td>48</td>
</tr>
<tr>
<td>Re-rating of ASME</td>
<td>28</td>
</tr>
<tr>
<td>Safety-Related Switches and Pressure Indicating Devices</td>
<td>44</td>
</tr>
<tr>
<td>Severity</td>
<td>36</td>
</tr>
<tr>
<td>Severity Class Assessment</td>
<td>41</td>
</tr>
<tr>
<td>Tailored System Safety Requirements for PVS</td>
<td>35</td>
</tr>
<tr>
<td>Technical Waivers</td>
<td>42</td>
</tr>
<tr>
<td>Test Articles and Test Specific PVS Exclusions</td>
<td>22</td>
</tr>
<tr>
<td>Vacuum Vessels</td>
<td>25</td>
</tr>
<tr>
<td>Vessels Originally Not Designed for, but being used for Mobile Applications</td>
<td>47</td>
</tr>
<tr>
<td>View Ports in PVS</td>
<td>46</td>
</tr>
<tr>
<td>Waiver</td>
<td>41</td>
</tr>
</tbody>
</table>