Observational Analysis of Coronal Fans

D.-C. Talpeanu\(^1,2\), L. Rachmeler\(^3\), M. Mierla\(^1,4\)

\(^1\) Royal Observatory of Belgium, 1180 Brussels, Belgium
\(^2\) Centre for Mathematical Plasma Astrophysics, KU Leuven, 3001 Heverlee, Belgium
\(^3\) NASA Marshall Space Flight Center, Alabama, United States of America
\(^4\) Institute of Geodynamics of the Romanian Academy, Bucharest, Romania

Abstract

Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 Å) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not the off-limb manifestation of similarly-named active region fans.

The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analysed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

Method of analysis

<table>
<thead>
<tr>
<th>Data used</th>
<th>Method</th>
<th>Features of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBA2/SWAP movies and images (174 Å)</td>
<td>track the footpoints from limb onto disk center (SWAP movies)</td>
<td>correlation of fans with filaments, active regions, coronal holes</td>
</tr>
<tr>
<td>SDO/HMI magnetograms</td>
<td>obtain Carrington coordinates of the footpoints from SWAP image (IDL code)</td>
<td>magnetic connectivity</td>
</tr>
<tr>
<td>GONG/Ha images</td>
<td>apply differential rotation time corrections</td>
<td>magnetic field structure (separatrix surfaces; presence of sharp bend or “knee” in EUV brightness)</td>
</tr>
<tr>
<td>SDO/AIA images: 171 Å, 193 Å, 211 Å</td>
<td>overlap the footpoint locations onto Ha, HMI, and AIA images (see Figure 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>generate PFSS extrapolation in footpoints area</td>
<td></td>
</tr>
</tbody>
</table>

Statistical results

- Analysed periods of time: March - July 2010, July 2012 - October 2014
- Total of 15 fans with lifetimes of 1 - 7 CR; measurements were made for each CR and for each fan
- PFSS extrapolations:
 - open field lines near footpoints; separatrix surface (in agreement with Seaton et al., 2013)
 - ½ of cases – fans’ open field had the same polarity as the corresponding pole (the rest: no open field/different polarity)
 - Presence of “knee” varies >> streamers and pseudostreamers
 - ⅓ of cases – footpoints are coronal holes
 - ⅓ of cases – large active regions in the vicinity of the footprints
 - ⅓ of cases – footpoints were inside coronal holes
 - NO footpoints inside coronal holes
 - All footpoints: within latitude interval [-40,40] degrees (see Figure 3)

Case study

- Analysed fan: 20140408NE (7 CR lifetime)
- Footpoints:
 - same magnetic domain
 - parallel to the polarity inversion line; also seen in Figure 4 - left: inversion of the inclination between CR 2149-2150
 - split along with the positive patch of magnetic field (also seen in Figure 4 - right)
- Fan shape:
 - size increases until CR 2154; CR2155: active region nearby >> strength decreases
 - “knee” presence: varies
 - occasionally connects to the pole (polarity shift?)

Conclusions

- If a patch of different magnetic polarity occurs between the two footpoints, the fan breaks into two and it may even disappear. This can also occur if an active region appears nearby, or if the one that already is in the vicinity of the footpoints erupts.
- All footpoints remain in the latitude interval [-40, +40] degrees, showing a strong correlation to the active region bands.
- No footpoints were present inside coronal holes.
- Open question: physical reason for which this seemingly open field is bright compared to coronal hole plasma.