Kepler Stellar Properties Catalog Update for Q1-Q17 DR25 Transit Search

KSCI-19097-004
Stellar Properties Working Group
15 December 2016

NASA Ames Research Center
Moffett Field, CA 94035
Document Control

Ownership
This document is part of the Kepler Project Documentation that is controlled by the Kepler Project Office, NASA/Ames Research Center, Moffett Field, California.

Control Level
This document will be controlled under KPO @ Ames Configuration Management system. Changes to this document shall be controlled.

Physical Location
The physical location of this document will be in the KPO @ Ames Data Center.

Distribution Requests
To be placed on the distribution list for additional revisions of this document, please address your request to the Kepler Science Office:

Michael R. Haas
Kepler Science Office Director
MS 244-30
NASA Ames Research Center
Moffett Field, CA 94035-1000

Michael.R.Haas@nasa.gov
DOCUMENT CHANGE LOG

<table>
<thead>
<tr>
<th>CHANGE DATE</th>
<th>PAGES AFFECTED</th>
<th>CHANGES/NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 8, 2016</td>
<td>all</td>
<td>Original Release</td>
</tr>
<tr>
<td>April 15, 2016</td>
<td>16-21</td>
<td>Added section 3 on posteriors; renumbered subsequent sections</td>
</tr>
<tr>
<td>October 6, 2016</td>
<td>22</td>
<td>Added Section 4 on the new distances and extinctions</td>
</tr>
<tr>
<td>December 15, 2016</td>
<td>22</td>
<td>Revised Section 4 to announce new (corrected) replicated posterior samples</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction .. 6
2. Catalog Updates ... 7
 2.1 Input Data.. 7
 2.2 Grid and Methodology ... 10
 2.3 Output Quantities .. 12
 2.4 Comparison of Planet-Candidate Host Star Parameters .. 14
3. Stellar Replicated Posterior Samples .. 16
4. Updated Distances and Extinction Values (ERRATUM) ... 22
5. Summary .. 23
6. References .. 24
1. Introduction

Huber et al. (2014) presented revised stellar properties for 196,468 Kepler targets, which were used for the Q1-Q16 TPS/DV planet search (Tenenbaum et al. 2014). The catalog was based on atmospheric properties (i.e., temperature (T_{eff}), surface gravity ($\log(g)$), and metallicity ([Fe/H])) published in the literature using a variety of methods (e.g., asteroseismology, spectroscopy, exoplanet transits, photometry), which were then homogeneously fitted to a grid of Dartmouth (DSEP) isochrones (Dotter et al. 2008). The catalog was updated in early 2015 for the Q1-Q17 DR24 transit search (Seader et al. 2015) based on the latest classifications of Kepler targets in the literature at that time. The methodology followed Huber et al. (2014).

Here we provide updated stellar properties of 197,096 Kepler targets. Like the previous catalog, this update is based on atmospheric properties that were either published in the literature or provided by the Kepler community follow-up program (CFOP). The input values again come from different methods: asteroseismology, spectroscopy, flicker, and photometry. This catalog update was developed to support the SOC 9.3 TPS/DV planet search (Twicken et al. 2016), which is expected to be the final search and data release by the Kepler project.

In this document, we describe the method and the inputs that were used to build the catalog. The methodology follows Huber et al. (2014) with a few improvements as described in Section 2.
2. Catalog Updates

2.1 Input Data

In this version of the catalog, we have included atmospheric properties that were recently published or acquired from ground-based follow-up of *Kepler* targets. The main new input values can be summarized as follows:

1) Two of the largest entries (>5,000 stars) come from publicly available spectroscopic surveys, namely LAMOST (medium resolution, R~1800) and APOGEE (high resolution, R~22,500).

2) For 14,535 stars we adopted surface gravities estimated from the detection of granulation in the *Kepler* data (i.e., the Flicker method; Bastien et al. 2013, Bastien et al. 2015). We limited the applicability of the Flicker log(g) values to stars for which the reported uncertainty was smaller than 0.2 dex to ensure higher reliability for the input values.

3) For more than 1,000 stars, we used spectroscopic parameters provided by the *Kepler* community follow-up program (CFOP) that observed around 800 planet candidate hosts and 535 solar-like stars for which solar-like oscillations were detected in the *Kepler* data.

4) A sample of ~835 stars which were classified as dwarfs in the original *Kepler* Input Catalog (KIC) were shown to be red giants based on the detection of giant-like oscillations in the *Kepler* data. We adopted log(g) values estimated from asteroseismology in combination with revised effective temperatures for these stars (Mathur et al., in preparation).

5) For 62 newly confirmed *Kepler* exoplanet hosts we adopted stellar parameters as published in the discovery papers.

6) We also report spectroscopic parameters for 317 stars, which were so far unclassified but were included in either the APOGEE or LAMOST surveys. We added 310 stars that were first observed in Q17.
Figure 1: HR diagram showing the input values used for the final catalog with different panels for the big survey inputs.

Figure 1 shows the distribution of the largest new inputs from LAMOST, APOGEE, Flicker, CFOP, and the sample of misclassified red giants. Reference keys are listed in Table 1 for the input values added since the Q1-Q16 catalog (Huber et al. 2014).

These input values were prioritized as follows:

For surface gravity, the highest priority was given to asteroseismology, then high-resolution spectroscopy, low-resolution spectroscopy, flicker, photometric observations, and finally the KIC.

For temperature, the highest priority was given to high-resolution spectroscopy, followed by low-resolution spectroscopy, photometric observations, and the KIC. In other words, the priority was given to the CFOP observations and published values for confirmed planets, then APOGEE, LAMOST, and finally the KIC.
Table 1

<table>
<thead>
<tr>
<th>Number of Stars</th>
<th>P_{Teff}</th>
<th>P_{logg}</th>
<th>$P_{[\text{Fe/H}]}$</th>
<th>$P_{\text{M,R,\rho}}$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1784</td>
<td>PHO55</td>
<td>AST55</td>
<td>SPE55</td>
<td>DSEP</td>
<td>Pinsonneault et al. (2014)</td>
</tr>
<tr>
<td>969</td>
<td>PHO56</td>
<td>AST56</td>
<td>PHO56</td>
<td>DSEP</td>
<td>Casagrande et al. (2014)</td>
</tr>
<tr>
<td>130</td>
<td>SPE57</td>
<td>SPE57</td>
<td>SPE57</td>
<td>DSEP</td>
<td>Petigura et al. (2013)</td>
</tr>
<tr>
<td>143</td>
<td>SPE58</td>
<td>SPE58</td>
<td>SPE58</td>
<td>DSEP</td>
<td>Rowe et al. (2014)</td>
</tr>
<tr>
<td>315</td>
<td>SPE59</td>
<td>SPE59</td>
<td>SPE59</td>
<td>DSEP</td>
<td>Buchhave et al. (2014)</td>
</tr>
<tr>
<td>96</td>
<td>SPE60</td>
<td>SPE60</td>
<td>SPE60</td>
<td>DSEP</td>
<td>Mann et al. (2013a,b)</td>
</tr>
<tr>
<td>11</td>
<td>SPE61</td>
<td>SPE61</td>
<td>SPE61</td>
<td>DSEP</td>
<td>Marcy et al. (2014)</td>
</tr>
<tr>
<td>1</td>
<td>SPE62</td>
<td>SPE62</td>
<td>SPE62</td>
<td>DSEP</td>
<td>Borucki et al. (2013)</td>
</tr>
<tr>
<td>1</td>
<td>SPE63</td>
<td>SPE63</td>
<td>SPE63</td>
<td>DSEP</td>
<td>Sanchis-Ojeda et al. (2013)</td>
</tr>
<tr>
<td>1</td>
<td>SPE64</td>
<td>TRA64</td>
<td>SPE64</td>
<td>DSEP</td>
<td>Gandolfi et al. (2013)</td>
</tr>
<tr>
<td>1</td>
<td>SPE65</td>
<td>TRA65</td>
<td>SPE65</td>
<td>DSEP</td>
<td>Ofir et al. (2014)</td>
</tr>
<tr>
<td>1</td>
<td>SPE66</td>
<td>TRA66</td>
<td>SPE66</td>
<td>DSEP</td>
<td>Deleuil et al. (2014)</td>
</tr>
<tr>
<td>1</td>
<td>SPE67</td>
<td>SPE67</td>
<td>SPE67</td>
<td>DSEP</td>
<td>Tingley et al. (2014)</td>
</tr>
<tr>
<td>6383</td>
<td>SPE68</td>
<td>SPE68</td>
<td>SPE68</td>
<td>DSEP</td>
<td>Luo et al. (2015) (LAMOST)</td>
</tr>
<tr>
<td>32</td>
<td>SPE69</td>
<td>AST69</td>
<td>SPE69</td>
<td>DSEP</td>
<td>Silva Aguirre et al. (2015) (some stars T_{eff} and Fe/H were from previous papers)</td>
</tr>
<tr>
<td>90</td>
<td>SPE70</td>
<td>SPE70</td>
<td>SPE70</td>
<td>DSEP</td>
<td>Muirhead et al. (2014) (only one star with log(g) from SPE70, and one hot star with M and R from MULT70)</td>
</tr>
<tr>
<td>835</td>
<td>KIC0</td>
<td>AST71</td>
<td>KIC0</td>
<td>DSEP</td>
<td>Mathur et al. (in prep.)</td>
</tr>
<tr>
<td>535</td>
<td>SPE72</td>
<td>ASTX</td>
<td>SPE72</td>
<td>DSEP</td>
<td>Chaplin et al. (in prep.) (CFOP)</td>
</tr>
<tr>
<td>14535</td>
<td>FLK73</td>
<td></td>
<td></td>
<td>DSEP</td>
<td>Bastien et al. (2015)</td>
</tr>
<tr>
<td>5677</td>
<td>SPE74</td>
<td>SPE74</td>
<td>SPE74</td>
<td>DSEP</td>
<td>Alam et al. (2015) (APOGEE)</td>
</tr>
<tr>
<td>1</td>
<td>SPE75</td>
<td>SPE75</td>
<td>SPE75</td>
<td>DSEP</td>
<td>Mancini et al. (2015)</td>
</tr>
<tr>
<td>3</td>
<td>SPE76</td>
<td>SPE76</td>
<td>SPE76</td>
<td>DSEP</td>
<td>Almenara et al. (2015)</td>
</tr>
<tr>
<td>4</td>
<td>SPE77</td>
<td>SPE77</td>
<td>SPE77</td>
<td>DSEP</td>
<td>Hébrard et al. (2014)</td>
</tr>
<tr>
<td>Number of Stars</td>
<td>P_{Teff}</td>
<td>P_{logg}</td>
<td>$P_{[\text{Fe/H}]}$</td>
<td>$P_{\text{M,R,\rho}}$</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>SPE78</td>
<td>SPE78</td>
<td>SPE78</td>
<td>DSEP</td>
<td>Santerne et al. (2014)</td>
</tr>
<tr>
<td>1</td>
<td>SPE79</td>
<td>SPE79</td>
<td>SPE79</td>
<td>DSEP</td>
<td>Dawson et al. (2014)</td>
</tr>
<tr>
<td>1</td>
<td>SPE80</td>
<td>SPE80</td>
<td>SPE80</td>
<td>DSEP</td>
<td>Kipping et al. (2014)</td>
</tr>
<tr>
<td>2</td>
<td>SPE81</td>
<td>SPE81</td>
<td>SPE81</td>
<td>DSEP</td>
<td>Endl et al. (2014)</td>
</tr>
<tr>
<td>1</td>
<td>SPE82</td>
<td>SPE82</td>
<td>SPE82</td>
<td>DSEP</td>
<td>Gandolfi et al. (2015)</td>
</tr>
<tr>
<td>1</td>
<td>SPE83</td>
<td>SPE83</td>
<td>KIC0</td>
<td>MULT83</td>
<td>Silvotti et al. (2014)</td>
</tr>
<tr>
<td>2</td>
<td>SPE84</td>
<td>SPE84</td>
<td>SPE84</td>
<td>DSEP</td>
<td>Everett et al. (2015)</td>
</tr>
<tr>
<td>8</td>
<td>SPE85</td>
<td>SPE85</td>
<td>SPE85</td>
<td>DSEP</td>
<td>Torres et al. (2015)</td>
</tr>
<tr>
<td>2</td>
<td>SPE86</td>
<td>SPE86</td>
<td>SPE86</td>
<td>DSEP</td>
<td>Muirhead et al. (2015)</td>
</tr>
<tr>
<td>1</td>
<td>SPE87</td>
<td>SPE87</td>
<td>SPE87</td>
<td>DSEP</td>
<td>Lillo-Box et al. (2015)</td>
</tr>
<tr>
<td>1</td>
<td>SPE88</td>
<td>SPE88</td>
<td>SPE88</td>
<td>DSEP</td>
<td>Bourrier et al. (2015)</td>
</tr>
<tr>
<td>1</td>
<td>SPE89</td>
<td>SPE89</td>
<td>SPE89</td>
<td>DSEP</td>
<td>Borucki et al. (2012)</td>
</tr>
<tr>
<td>778</td>
<td>SPE90</td>
<td>SPE90</td>
<td>SPE90</td>
<td>DSEP</td>
<td>KOI CFOP</td>
</tr>
</tbody>
</table>

Table 1 contains a reference list key for the provenances added since the Q1-Q16 catalog. Columns 2 - 5 give the provenances for the designated input parameters, which are coupled to numbers denoting the references from which the input values were adopted. See Section 6.5 in Huber et al. (2014) for details.

2.2 Grid and Methodology

The input values (*i.e.*, T_{eff}, $\log(g)$, and $[\text{Fe/H}]$) were fitted to DSEP isochrones using typical uncertainties according to Table 2 of Huber et al. (2014) to derive interior properties. For the Flicker results, the adopted $\log(g)$ uncertainty is 0.2 dex.

We used the same Dartmouth grid as in Huber et al. (2014), with the exception of additional interpolation in mass for parameter spaces that were sparsely covered in the original grid. For stellar parameter inference we followed the Bayesian methodology described in Serenelli et al. (2013), which involves the direct integration of discrete likelihoods weighted by the volume that each model encompasses in mass, age and metallicity. We note that this method is equivalent to an MCMC, with the advantage that it is considerably faster, but the disadvantage that it does not automatically provide parameter correlations. The resulting Discrete posteriors were used to calculate one-sigma confidence intervals around the best-fit value for each parameter. Note that due to a coding error the
positions of the posteriors were accidentally shifted upwards by half of the integration step size for each parameter. This only affects the reported uncertainties and amounts to a small absolute shift (~1/20 sigma) for each parameter.

Figure 2 shows a few examples of Discrete posteriors for solar-type dwarfs with log(g) input values from asteroseismology, spectroscopy, and the KIC. In the asteroseismic case, the peak is very narrow compared to the other cases. The large input uncertainty in log(g) for the KIC yields a distribution which peaks at the main sequence (the most probable for a star with a weak log(g) constraint) and has a tail towards lower log(g) values. We note that the best-fit value does not always coincide with the mode of the posterior distribution. Adopting the best-fit was motivated by the fact that adopting the mode as a point estimate would lead to an unrealistically high number of main-sequence stars due to the fact that for a given input value of log(g) with a large uncertainty, a star will probabilistically be most likely on the main sequence. Since the Kepler target stars represent neither a volume nor a strictly magnitude-limited sample (see, for example, the target selection criteria as described in Batalha et al. 2010), constructing a prior to characterize the most probable evolutionary state of a Kepler target star is not straightforward. The stellar classification in the Kepler Input Catalog used a prior constructed from a volume-limited Hipparcos sample, which has been shown to underestimate the number of subgiants due to Malmquist bias (see, for example, Bastien et al. 2014). Adopting the best-fit values ensures that the point estimates reported in the catalog account for some of the expected Malmquist bias in the Kepler sample, but we caution that some systematic biases likely remain in the catalog (and these biases will likely not be fully resolved until Gaia parallaxes become available).

Figure 2: Example of Discrete posteriors for three different stars where we used the asteroseismic log(g) (top left panel), the spectroscopic log(g) (top right panel), and the KIC log(g) (bottom left panel). The dashed red line is the input value used and the solid blue line is the output value with associated uncertainties (blue dashed lines).
For stars with input values that fall off the Dartmouth grid (e.g., very cool dwarfs) we adopted the input and output values from Huber et al. (2014). There are also three stars where we adopted published literature values for all stellar parameters (i.e., KIC 5807616, 5868793 and 10001893). Indeed these three stars fall out of the grid because they are too hot with temperatures above 25,000K. Unlike previous deliveries, we did not override catalog values with published solutions that provide better estimates for radii and masses (e.g., from asteroseismology) in order to homogeneously derive posterior distributions (including distances) for all stars. This means that for some stars better estimates for radius and mass may be available in the literature. We also emphasize that the DSEP isochrones do not include He-core burning models, and hence systematic errors in stellar properties (in particular masses) for red giants should be expected (see Huber et al. 2014 for details) compared to more detailed studies (e.g., Pinsonneault et al. 2014).

The new catalog also includes several corrections that were pointed out by the community since the release of the Q1-Q16 catalog. Due to a coding error, every star in the Q1-Q16 catalog with input $T_{\text{eff}} < 3250$K was automatically classified as a dwarf using BT-Settl models even if the input T_{eff} indicated that it was a giant. To correct this, we revisited all dwarfs that were classified using BT-Settl models and verified their evolutionary state using the Mann et al. (2012) spectroscopic classifications. When this was verified, we adopted the Q1-Q16 BT-Settl solution.

The reported uncertainties are the one-sigma values associated with the best-fit values. We note that the uncertainties are somewhat smaller than in the previous catalog due to the volume weighting of each isochrone point, which was not taken into account in the Q1-Q16 catalog.

For this delivery, two additional outputs are provided: distances and the extinction in the V-band (A_V). To compute the distance, we take the J-band magnitude when available or the g-band, and calculate a distance using absolute magnitudes from the Dartmouth grid and the 3D reddening model of Amores & Lepine (2005). We adopt the reddening law from Cardelli et al. (1989) with $A_V/A_J = 1.234$ and $A_V/A_g = 0.288$.

2.3 Output Quantities

The outputs delivered in this catalog are best fit values and one-sigma confidence intervals for mass, radius, surface gravity, effective temperature, density, metallicity, distance and A_V. Figure 3 represents the HR diagram of the output from the Q1-Q17 DR24 catalog (previous delivery, right panel) and the Q1-Q17 DR25 catalog (this delivery, left panel). We clearly see a larger “eye” around the main sequence/subgiants area in the current delivery. This means that we have more subgiants than before, which is mostly due to the LAMOST and Flicker results.
Figure 3: Output values of the new delivery (Q1-Q17 DR25, left panel) and the previous delivery (Q1-Q17 DR 24, right panel). Color denotes number density of stars as in Huber et al. (2014).

Figure 4 shows the distance distribution for *Kepler*-observed dwarfs with $T_{\text{eff}} < 6700\text{K}$ and $\log(g) > 3.5$ (left panel) and for red giants with $T_{\text{eff}} < 5000\text{K}$ and $\log(g) < 3.5$ (right panel). As expected, the red giants are much more distant than dwarfs.

![Figure 4: Distribution of distances for dwarfs (left panel) and red giants (right panel) in the new catalog delivery.](image-url)
2.4 Comparison of Planet-Candidate Host Star Parameters

Figure 5 compares DSEP radii and masses of the planet host stars between the current delivery and the previous Q1-Q17 DR24 catalog.

It is comforting to see that stars with the same inputs as before \(i.e.,\) the black diamonds in the figure) fall on or very close to the line \(R_{Q1-Q17}/R_{\text{new}}=1\), so these stars change by a few percent at most. Such small changes are explainable by the new methodology that has been applied (best-fit value instead of the median) and the updated grid where we have filled some existing gaps.

Not surprisingly, the largest changes are found for stars with new input data.

1) Many stars with new CFOP parameters have a different evolutionary stage. Indeed, we mentioned earlier that a fraction of the stars moved from the main sequence to become more evolved subgiants. This explains the number of stars (cyan symbols) that have a larger radius than in the previous catalog. This is also the case for the star with Flicker input (blue symbol) and some of the individual new inputs (pink symbols).

2) For the stars cooler than \(~4500K\), we notice that many become smaller and less massive. We believe that in many cases the new spectroscopic observations for these cool stars led to a higher \(\log(g)\), and thus a smaller radius. In addition to the change of the input value, the new updated grid contributed to these changes in the stellar parameters as well.

Some particular cases of outliers:

1) Two stars, KIC 5640085 (KOI-448) and KIC 10027323 (KOI-1596), with \(T_{\text{eff}}\) around \(4000K\) and \(R_{Q1-Q17}/R_{\text{new}}\sim1.4-1.5\), were using inputs from SPE58 but were actually too hot and too large in the Q1-Q17 DR24 catalog. The input parameters were reversed back to the Q1-Q16 catalog as SPE5.

2) KIC 7529266 (KOI-680) has the largest change in radius \(R_{Q1-Q17}/R_{\text{new}}\sim0.3\) due to updated input values from SPE76, which yields a \(\log(g)\) of 3.5 \(i.e.,\) a subgiant compared to the \(\log(g) = 4.35\) dwarf classification in the KIC.

3) The decrease in radius for KIC 8733898 (KOI-2842, \(R_{Q1-Q17}/R_{\text{new}}\sim1.4\)) is due to a significantly cooler spectroscopic temperature (SPE86) compared to the previous photometric classification (PHO2).

4) Finally, KIC 7582689 (KOI-3097) is a solar-type star with a significantly decreased radius. It has a larger \(\log(g)\) input value from SPE84 (of 4.40 dex) compared to the previous catalog (of 4.13 dex) and thus a smaller radius.
Figure 5: Comparison of the radii and masses of the planet host stars showing the different subsamples where we used either new or the same input values as in the previous catalog.
3. Stellar Replicated Posterior Samples

In the remainder of this document, we use the following terminology to refer to different types of posteriors:

- MCMC posteriors: posteriors obtained from traditional MCMC chains
- Discrete posteriors: discrete posterior probability distribution functions obtained following Serenelli et al. (2013) by directly integrating isochrones given input constraints
- Replicated posteriors: posteriors delivered here that are approximations of the Discrete posteriors constructed as described hereafter.

Replicated posteriors for all stellar parameters are provided for each target in the catalog where we applied the Serenelli et al. (2013) method. We note that these are not MCMC posteriors but approximations of Discrete posteriors.

The method for approximating a Discrete posterior is as follows. The Discrete posteriors are based on a subset of ~400,000 models from the grid of models used. Each model is a point on the isochrones and is described by a set of star parameters (i.e., \(T_{\text{eff}}\), [Fe/H], log g, M, R, \textit{etc.). From the Discrete posterior, each individual model has some probability \(x\). We scale the Discrete posterior by a factor \(N_{\text{scale}}\) so that the Discrete posterior now goes from 0 to \(N_{\text{scale}}\). After a few tests \(N_{\text{scale}}\) was fixed to 50. Then we draw a random model (from a uniformly random process) with a probability \(x\) from the Discrete posterior and replicate all its parameters \(x*N_{\text{scale}}\) times. If \(x*N_{\text{scale}}<1\), the model is not replicated. The drawing is repeated until the number of samples reaches the total number of samples desired, \(N_{\text{sample}}\), which for this delivery was fixed at 40,000. This value for \(N_{\text{sample}}\) was chosen as a compromise between achieving appropriate correlation lengths and keeping the file sizes to a reasonable value for each star. A histogram of the Replicated posteriors provides the approximation of the Discrete posteriors, which are binned versions of the individual model probabilities along a given parameter. Importantly, the Replicated posteriors conserve correlations between the parameters because each set is drawn so as to correspond to a self-consistent model.

Figure 6 shows a comparison between the stellar Replicated Posterior samples obtained for Kepler-452 (Jenkins et al. 2015), and the classical MCMC posteriors for the three parameters \(T_{\text{eff}}, M, \text{and } R\). Both methods give similar distributions, validating the approximation method yielding the Replicated posteriors.
Figure 6: Comparison between the MCMC posteriors (blue line) and the Replicated posteriors (black line) obtained from the method applied in this delivery for the Kepler planet-host star, Kepler-452.

Figure 7 shows an example comparison between Discrete posteriors and the Replicated posteriors constructed as explained above for a dwarf (KIC 757076). The Replicated posteriors show good agreement with the Discrete posteriors. We checked the results for different spectral types and they looked similar to this example.

We provide in the files the distribution of the different parameters as well as the logarithm of the likelihood as computed in Huber et al. (2014) and the logarithm of the weight, which is the volume of the model in mass, metallicity, and age. The priors are not listed as we used flat priors on these quantities.
Finally, we remind the reader that the Replicated posteriors are provided for 196,850 stars as ~250 stars fall of the grid. These are either very cool dwarfs (T$_{\text{eff}} < 3250$ K or hot stars with T$_{\text{eff}} > 25000$K) and we used other solutions for them so they have null uncertainties.

![Graphs of Stellar Properties](image)

Figure 7: Example of Discrete posteriors (red lines) with the Replicated posteriors built as described in the text (black lines).

Worked examples:

We show here some simple examples on how to use these Replicated posteriors files. They have the generic name: `kplr<kepler_id>_dr25-stellarposterior.txt` and contain 10 space-separated columns for each star:

- Teff, Logg, Fe/H, Mass, Radius, log(rho), distance, Av, log(likelihood), log(weights).

The weights are computed as described above, following Serenelli et al. (2013). We note that we have assumed flat priors in age, metallicity, and mass in our analysis, and hence these are not listed separately.
Commands in IDL:

; Example 1. Generating the plots shown in Figure 8. The plots in Figure 9 only require a change in input file name.
; Reading the file for a single star:
> readcol, ‘kplr008073672_dr25-stellarposterior.txt’, teff, logg, feh, M, R, rho, d, Av, lh, weights

; Plotting the correlation between Teff and Radius:
> plot, teff, R, psym=7, xtit='Teff (K)', ytit='R (Rs)'

; Plotting the correlation between Mass and Radius:
> plot, M, R, psym=7, xtit='M (Ms)', ytit='R (Rs)'

; Plotting the correlation between log(g) and distance:
> plot, logg, d, psym=7, xtit='log g', ytit='d (pc)'

Figure 8: Example correlation plots for the cool dwarf KIC 8073672.
Figure 9: Example correlation plots for the cool dwarf KIC 757076.
;Example 2. Generating the plots shown in Figure 10.
;Reading the file for a single star:
> readcol, 'kplr000757076_dr25-stellarposterior.txt', teff, logg, feh, M, R, rho, d, Av, lh, weights
;Plotting histograms of results:
> plothist, Teff, bin=10, peak=1, xtit='Teff (K)'
> plothist, M, bin=0.05, peak=1, xtit='M (Ms)'

Figure 10: Example histograms for the stellar Replicated posteriors of KIC 757076.

;Example 3. Reducing the number of samples
> Teff_s=dblarr(4e3)
> n=10 ; take 1 point out of 10
> for i=0, n_elements(Teff_s)-1 do Teff_s(i)=Teff1(n*i)
4. Updated Distances and Extinction Values (ERRATUM)

Due to a coding error in the isochrones fitting code, the extinction values in the J-band and g-band were swapped in the initial deliveries dated January 8 and April 15, 2016, leading to incorrect distances and extinction values. Since most distances were derived from J-band, this resulted in a systematic underestimation of reported distances by an average of ~20% for typical solar-type stars, and up to ~50% for more distant red giant stars. Correspondingly, this also led to a systematic overestimation of A_V values by up to ~0.05 mag.

The corrected distances and extinction values went live at NASA’s Exoplanet Archive on November 10, 2016. Similarly, the replicated posterior samples (see Section 3) were corrected and posted to the Archive on December 15, 2016 with a creation timestamp of 2016-10-20 written in the file headers. Any values or replicated posterior samples for distances or extinctions downloaded before these dates should not be used.
5. Summary

The _Kepler_ Q1-Q17 DR25 stellar properties catalog includes improved stellar properties for 28,800 stars including spectroscopic inputs from surveys (CFOP, APOGEE, LAMOST), the Flicker log(g), and the reclassification of more than 800 stars. We also added 310 stars that were first observed during the last _Kepler_ quarter, Q17. Finally, 317 stars that were unclassified because they lacked reliable 2MASS colors now have spectroscopic parameters from LAMOST and APOGEE. This increases the total number of stars in the _Kepler_ catalog to 197,096, including 4085 planet(-candidate) host stars.

This Q1-Q17 DR25 star properties catalog was used for the Q1-Q17 DR25 TPS/DV planet search. This catalog and the associated stellar replicated posteriors (see Section 3) are available at the NASA Exoplanet Archive: http://exoplanetarchive.ipac.caltech.edu.
6. References

Luo, A-Li, et al. 2015, RRA, 15, 1095
Mancini, L., et al. 2015, arXiv1504.04625
Petigura, E. A., Howard, A. W., & Marcy, G. W. 2013, PNAS, 110, 19175