Characterization of Volatiles Loss from Soil Samples at Lunar Environments

Julie Kleinhenz
NASA Glenn Research Center, Cleveland, Ohio, 44135

Jim Smith
NASA Kennedy Space Center, Florida 32899

Ted Roush, Anthony Colaprete
NASA Ames Research Center, Mountain View, CA 94035

Kris Zacny, Gale Paulsen, Alex Wang
Honeybee Robotics Spacecraft Mechanisms Corporation, Pasadena, Calif. 91103

Aaron Paz
NASA Johnson Space Center, Houston, TX, 77058
Mission

- Prospect for water at the lunar poles as a potential resource for In-Situ Resource Utilization (ISRU)
- Characterize the nature and distribution of water/volatiles in the lunar polar sub-surface materials

Mobility

Rover
- Mobility system
- Cameras
- Surface interaction

Sampling

Drill
- Subsurface sample acquisition
- Auger for fast subsurface assay
- Sample transfer for detailed subsurface assay

Processing & Analysis

Oxygen & Volatile Extraction Node (OVEN)
- Volatile Content/Oxygen Extraction by warming
- Total sample mass

Lunar Advanced Volatile Analysis (LAVA)
- Analytical volatile identification and quantification in delivered sample with GC/MS
- Measure water content of regolith at 0.5% (weight) or greater
- Characterize volatiles of interest below 70 AMU

Prospecting

Neutron Spectrometer System (NSS)
- Water-equivalent hydrogen > 0.5 wt% down to 1 meter depth

NIR Volatiles Spectrometer System (NIRVSS)
- Surface H2O/OH identification
- Near-subsurface sample characterization
- Drill site imaging
- Drill site temperatures
Resource Prospector (RP)
Integrated Thermal Vacuum Test Program

- A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations for RP
 - Volatiles loss during sampling operations
 - Hardware performance
 - Concept of operations
- 5 test campaigns over 5 years have been conducted with RP hardware with advancing hardware designs and additional RP subsystems
 - Volatiles sampling 4 yrs
- Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions
 - Use data to improve theoretical predictions
 - Determine driving variables for retention
 - Bound water loss potential to define measurement uncertainties
Overview

• The main goal of this talk is to introduce you to our approach to characterizing volatiles loss for RP.
 – Introduce the facility and its capabilities
 – Overview of the RP hardware used in integrated testing (most recent iteration)
 – Summarize the test variables used thus far
 – Review a sample of the results
VF13
Planetary Surface Simulation Facility

Dedicated ‘dirty’ thermal vacuum chamber operated with up to 1-ton of lunar soil simulant

Dimensions
- Maximum internal volume of 6.35 m³
- Internal dimensions: 3.6 m tall, 1.35 m diameter with cold wall, 1.5 m without cold wall
 - Fixed base 1.08 m deep + Removable cap 2.52 m tall

Thermal capability
- Removable cold wall in cap (top 2.5 m of chamber)
 - Temperature control from ambient to liquid nitrogen temperatures
 - 2 semi circular halves, independently controlled to achieve temperature gradients
 - Minimum temperature 80K (liquid nitrogen cooled)
- Fixed base has separate Liquid Nitrogen cooling, independent of cold wall
 - Supports cooling of soil bin (existing bin is 0.278 m diameter, 1.2 m tall)
- Liquid nitrogen is supplied from a 55,000 gallon dewar

Vacuum capability
- Achievable pressure on the order of 10⁻⁶ Torr, with soil
- Variety of customizable electrical and mechanical feed-throughs
- Four vacuum pumps to accommodate range of pressure regimes and pump rates
- (in process) Mars gas capability: Flow panel controlled with a Mass Spectrometer to maintain a Mars environmental conditions.

Facility operation
- PLC control allows for unattended operation for majority of pump down and cooling
- Customizable digital data acquisition system supporting over 80 channels
- Internal cameras for optical access
VF13 Research Hardware

Cylindrical Bin ("Drill Tube")
- 1.2m (48in) tall, 0.278m (11in) diameter
- Holds 100 kg of simulant
- Three side ports for soil embedded thermocouples (15, type T)
- Clamp on LN\textsubscript{2} Coolant system, soil temperature as low as -160° C

Square Bin
- 1 m x 1 m x 1 m
- Holds 800 kg of soil simulant

Robotic Translation Table (trolley)
- Enables lateral motion of research hardware to reach different locations on the soil bed surface
- Individual, Manual control of X and Y directions
- Position Encoders: ± 2 mm (approx.)
Soil Bin analysis methods

Soil Bin Preparation

- LHT-3M, ~100kg, doped with distilled water
 - Mixed in batches of 20-25kg (5 gal)
 - Samples taken from each batch to verify moisture
- Compacted into cylindrical bin
 - Vibratory compaction with 150lb surcharge weight
 - Compacted in layers, ~20 kg each

“Post Mortem”

- No in-situ moisture measurement during vacuum test
- Depth dependent moisture profile generated after test (thawed soil bin) using core sampling
 - Difference between thawed and frozen bin moisture profile only impacts the top ~10cm
 - Majority of desiccation occurs in top 30cm
RP Test hardware

- RP EDU Drill: *Honeybee Robotics*
- Near InfraRed Volatiles Spectrometer System (NIRVSS): NASA ARC
- Oxygen & Volatile Extraction Node (OVEN): NASA JSC
- Sample Capture Mechanisms
- Residual Gas Analyzer
Sample analysis methods

Test samples
- Sampling at 30 to 40cm depth
- Drilling in progressive 10cm bites
- The bottom 10 cm of auger captures sample on tapered auger flutes
- Sample dispensed into crucibles using a passive brush wheel and funnel on drill
- Solenoid actuated, spring driven seal mechanism with a knife edge-to-teflon seal, 100lbf clamp force

Sample analysis
- Moisture content of each sample is measured using ASTM standard
 - Bake at 110°C
 - Weight change
<table>
<thead>
<tr>
<th>Variables</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>Low as possible 1e(^{-5}) Torr to 2e(^{-6}) Torr</td>
</tr>
<tr>
<td>Shroud Temperature</td>
<td>Controlled -50° C to -175° C</td>
</tr>
<tr>
<td>Soil Bin Temperature</td>
<td>Low as possible (Dependent on time, soil moisture) -80° C to -163° C</td>
</tr>
<tr>
<td>Soil Bin Moisture</td>
<td>Controlled ≤ 5wt% Stratification</td>
</tr>
<tr>
<td>Sample Crucible Temperature</td>
<td>Controlled 10° C Cold as possible -20° C to -70° C</td>
</tr>
<tr>
<td>Sample exposure time (in crucible)</td>
<td>Controlled 3min delay Fast as possible ~5min</td>
</tr>
<tr>
<td>Sample size</td>
<td>Target 15 g Average 12g (Range 4 g to 20 g)</td>
</tr>
</tbody>
</table>
Results from a drill sample bite:

Water release, according to RGA, show majority of release occurs when dispensing into the sample crucible.

Sample 2017_O3: 3.3g, 0.4wt%, 84% loss
Test Results, general observations

- Samples from a higher soil content retain higher percentage of water
- Data from low mass samples is less consistent (more scatter)
Test Results, general observations

• The rate of mass loss appears to be consistent for similar sample sizes. Samples with higher starting moisture content therefore lose less %.

• This mass loss could be correlated to sublimation rate.

• The sample is exposed to 4 temperatures: which is the driving temperature?
 – Soil bin
 – Cold wall
 – Drill bit
 – Sample Crucible
Test Results, general observations

The closest correlations are with:

Bit temperature
- But the lower temperature also have lower sample masses.

Soil temperature:
The 3 points at the lowest temperature are outliers to this trend. These are the 3 OVEN samples whose differences are:
- Sealed better than most of the SCM samples
- Warmer crucible temperature for OVEN crucibles (though on the bottom right graph this trends well with mass loss)
Summary

• To date we have conducted 4 test campaigns with volatiles sampling
 – 43 samples total
 – 4 soil moisture conditions with 26 samples from the same (~5wt%)
• Test performed with 3 RP subsystems: Drill, NIRVSS, OVEN
 – 3 tests were performed with the RP OVEN hardware, all the rest with the customized Sample Crucible Mechanisms (SCMs)
• Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions
 – Use data to improve theoretical predictions
 – Determine driving variables for retention, adjust hardware and con-ops accordingly
 – Bound water loss potential to define measurement uncertainties

• Analysis of sample results in on-going, with a summary paper expected at the ASCE Earth and Space conference, April 2018
BACKUP
Test Results, example
Resource Prospector (RP) Overview

Mission:
• Characterize the nature and distribution of water/volatiles in lunar polar sub-surface materials
• Demonstrate ISRU processing of lunar regolith

Project Timeline:
✓ FY13: Pre-Phase A: MCR (Pre-Formulation)
✓ FY14: Phase A (Formulation)
✓ FY15: Phase A (Demonstration: RP15)
✓ FY16: Phase A (Risk Reduction)
✓ FY17: L2 Requirement Lockdown (July 11)
✓ FY18: MRD and PDR (Implementation)
✓ FY19: CDR (Critical design)
✓ FY20: I&T
✓ FY21: RP launch

RP Specs:
Mission Life: 6-14 earth days (extended missions being studied)
Rover + Payload Mass: 300 kg
Total system wet mass (on LV): 5000 kg
Rover Dimensions: 1.4m x 1.4m x 2m
Rover Power (nom): 300W
Customer: HEOMD/AES
Cost: ~$250M (excl LV)
Mission Class: D-Cat3
Launch Vehicle: EM-2 or ELV