The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

Edgar Zapata NASA Kennedy Space Center

Presented at
The American Institute of Aeronautics & Astronautics Space 2017 Forum
Session: Reinventing Space II
Orlando FL, September 12-14, 2017
Context

1. Commercial & Cost Data
 Tomorrow – Sept. 13, Space Cost and Economics, 10am-12:30pm
 “An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions”

2. Estimating Costs for New Elements from Data
 Here – Sept. 12, Reinventing Space II, 3:30-6:30pm

3. Exploration Scenarios
 Later – Sept. 12, Space Exploration, 7:30-9pm
 “NASA Human Spaceflight Scenarios Do All Our Models Still Say ‘No’?”
Purpose

- Explore the potential for commercial partnerships, modeled on recent programs, to reduce the cost to NASA for “...other required deep space exploration capabilities...”
Background

• Increased affordability and other improvements in partnerships for cargo and crew to ISS

 • Tomorrow – Sept. 13, Space Cost and Economics, 10am-12:30pm
 • Location: Celebration 2

 “An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions”

• 2016 NASA request for information stated it must “maximize the efficiency and sustainability of the Exploration Systems development programs”, as “critical to free resources for re-investment...such as other required deep space exploration capabilities.”
Background

• Cancellation of Constellation program can be seen simply, as not adding a lunar lander to NASA’s budget, potentially another billion+ dollars a year

• Multiple deep space exploration elements are like multiple’s of the kind of programs NASA has usually been approved for – one or two at a time

 ...when exploration approaches depend on adding ever more layers of cost to NASA’s budget, even adding money just delays re-entering the same trap...

 ...then “you are right back where you started, the budget crashes, you can’t afford to build the new thing without cancelling the old thing.”

Background

- There are a dozen+ items like landers in deep space exploration
 - Probes
 - Communications
 - Stages
 - Landers
 - Habitation in-space
 - Habitation at the surface destination
 - And much more... spacesuits, rovers, other unique spacecraft, ISRU, surface power, depots, refillable stages, tankers, etc.
Background

We know we must reduce the costs of deep space systems significantly or no NASA space exploration plans ever add up (budget / costs, time, and other “-ilities”)

• Tonight – Sept. 12, Space Exploration, 7:30-9pm
• Location: Exposition Hall

“NASA Human Spaceflight Scenarios, Do All Our Models Still Say ‘No’?”
Commercial – Beyond...

• Beyond LEO
 • Schier, J., “Concept for a Lunar Power and Communications Utility,” 2015

• Beyond NASA
 • Non-NASA customers preferable, but not a litmus test
 • Many aspects to what’s “commercial” to NASA – NASA “investor” mindset, “cost risk” posture, risk buy-down process, # of partners, “services”, more...

• Beyond Biases
 • Quantify before making decisions
 • Can’t afford not to consider all options!
Cost Data – Non-Recurring Costs (Excludes Launcher)

- CSM-Apollo (crew to Cis-Lunar)
- CST-100 (crew to LEO)
- Cygnus (cargo to LEO)
- Dragon 1.0 (cargo to LEO)
- Dragon 2.0 (crew to LEO)
- LM-Apollo (crew to Lunar Surface)
- Orion (crew to Cis-Lunar)

Non-recurring $M

- **$26,700**
- **$3,271**
- **$251**
- **$307**
- **$2,201**
- **$14,761**
- **$19,466**
- **-$**
- **$5,000**
- **$10,000**
- **$15,000**
- **$20,000**
- **$25,000**

Total of Actuals to 2014,

+ **Planned to complete**

NASA

Investment

Private

Investment

Average Shown; Uncertainty
Lo $21B, Hi $32B

Total of Actuals to 2014, +Planned to complete

NASA Only Shown Private $ add $345M

NASA Only Shown Private $ add $352M

Total of Actuals to 2014, +Planned to complete

Average Shown; Uncertainty
Lo $12B, Hi $17B

Total of Actuals to 2017, +Planned 2018-2021, +Estimates 2022-2023 to complete

Included For Context
Cost Data – Recurring Costs (Excludes Launcher)

Spacecraft Recurring Price to NASA per Unit, Procurement Only, $M 2017$

<table>
<thead>
<tr>
<th>Spacecraft</th>
<th>Recurring $M 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSM-Apollo (crew to Cis-Lunar)</td>
<td>$716</td>
</tr>
<tr>
<td>CST-100 (crew to LEO)</td>
<td>$418</td>
</tr>
<tr>
<td>Cygnus (cargo to LEO)</td>
<td>$174</td>
</tr>
<tr>
<td>Dragon 1.0 (cargo to LEO)</td>
<td>$98</td>
</tr>
<tr>
<td>Dragon 2.0 (crew to LEO)</td>
<td>$308</td>
</tr>
<tr>
<td>LM-Apollo (crew to Lunar Surface)</td>
<td>$732</td>
</tr>
<tr>
<td>Orion (crew to Cis-Lunar)</td>
<td>$980</td>
</tr>
</tbody>
</table>

Included For Context

- CSM-Apollo: Production Only; Average Shown; Uncertainty Lo $300M, Hi $1,100M
- CST-100: Production Only; Average Shown; Uncertainty Lo $300M, Hi $1,100M
- Cygnus: Production Only; Average Shown; Uncertainty Lo $300M, Hi $1,100M
- Dragon 1.0: Production Only; Average Shown; Uncertainty Lo $300M, Hi $1,100M
- Dragon 2.0: Production Only; Average Shown; Uncertainty Lo $300M, Hi $1,100M
- LM-Apollo: Production Only; Average Shown; Uncertainty Lo $300M, Hi $1,100M
- Orion: Production Only; Average Shown; Uncertainty Lo $300M, Hi $1,100M

Ops in but Launcher Excluded

- CSM-Apollo: All - Element Production and it’s related Ops included (as a service), BUT the launcher and it’s costs are excluded. For CST-100 & Dragon 2.0, estimates / planned.
- CST-100: Production Only
- Cygnus: Production Only
- Dragon 1.0: Production Only
- Dragon 2.0: Production Only
- LM-Apollo: Production Only
- Orion: Production Only

Note: An estimate @1 unit a year. If @2 flights year, $654M/unit. Scenario if Orion less than 1 Flts/year thru 2046 = $1,672M/unit.
What’s Our Back of our Napkin Look Like?

• ? Umm...say a deep space spacecraft could be about 10,000 kg dry mass
 ➢~$5B to develop
 ➢~$700M per unit, to make/op

• ?Umm...say a small Apollo scale lunar lander is just over 4,000 kg dry mass
 ➢~$2B to develop
 ➢~$300M per unit, to make/op...

(Here’s where Spock says “Fascinating”)

Of course, we know this is all wrong! But it hints at something that might be on target.
What’s Our Back of our Napkin Look Like?

• Deep space spacecraft are much more complex right?

• Landers are much more complex right?

...maybe not.
Method – Forget Commercial Data a Moment – Look to Apollo

• Assumption: If complexity tells us about costs, then costs tells us about complexity

Apollo cost data indirectly tells us the Apollo lander was LESS complex or ABOUT AS as complex as it’s sister spacecraft
Method

- **Scale** relationships bounded by dry mass
- **Complexity** relationships bounded by actual Apollo experience

+ many dusty and dry equations
Introduction to a “Costed” Baseball Card – Landers Example

Lunar & Mars Landers - Development

Description of Basis of Estimate:

Cost estimating relationships combine older (Apollo) and recent (Commercial Crew, Orion) historical data according to the acquisition approach indicated (cost-plus or commercial, public private partnership / PPP).

If the acquisition approach is a commercial, public private partnership, the lander cost estimate departs from the experience with either the CST-100 or the Dragon crew spacecraft.

If the acquisition approach is cost-plus, sole-source, the lander cost estimate departs from the experience with the Orion crew spacecraft.

<table>
<thead>
<tr>
<th>Lander Scale & Acquisition Approach</th>
<th>Apollo Scale Lunar Lander $B Development</th>
<th>Altair Lunar Lander (does not do LOI) $B Development</th>
<th>Altair Lunar Lander (does LOI) $B Development</th>
<th>Mars Lander (ver. 40t Payload, incl. MAV) $B Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Prop. Mass (kg)</td>
<td>4,214</td>
<td>8,392</td>
<td>12,829</td>
<td>19,881</td>
</tr>
<tr>
<td>Mass at Liftoff (kg)</td>
<td>15,065</td>
<td>30,000</td>
<td>45,864</td>
<td>71,076</td>
</tr>
<tr>
<td>Commercial / PPP - Low</td>
<td>LO $2.4</td>
<td>$3.4</td>
<td>$4.3</td>
<td>$6</td>
</tr>
<tr>
<td>Commercial / PPP - High</td>
<td>$4.3</td>
<td>$6.0</td>
<td>$7.7</td>
<td>$10</td>
</tr>
<tr>
<td>Cost-Plus, Sole Source</td>
<td>$15.1</td>
<td>$20.8</td>
<td>$26.9</td>
<td>$36</td>
</tr>
</tbody>
</table>

Notes:
1. These are procurement dollars ONLY. in 2017 $. Estimates do NOT include government program & project management.
2. All estimates are for 1 provider. Generally, for partnerships with multiple partners use 2X the average of lo/hi plus process costs (other early partner investments).
3. Development includes flight test.
4. Ground Ops & Launch, Flight Ops: IF a commercial / PPP basis, ground ops & launch and flight ops development are within the development estimate, and ground ops & launch are within the per unit estimate. IF cost-plus / sole-source, ground ops & launch and flight ops are NOT included in any estimates.
5. Mission Ops: For all estimates, additional costs must be estimated for especially unique in-space operations (rendezvous, mate, transfer of propellant, etc. as apply.)
Introduction to a “Costed” Baseball Card – Landers Example

Lunar & Mars Landers - Manufacture

Description of Basis of Estimate:

Cost estimating relationships combine older (Apollo) and recent (Commercial Crew, Orion) historical data according to the acquisition approach indicated (cost-plus or commercial, public private partnership / PPP).

If the acquisition approach is a commercial, public private partnership, the lander cost estimate departs from the experience with either the CST-100 or the Dragon crew spacecraft.

If the acquisition approach is cost-plus, sole-source, the lander cost estimate departs from the experience with the Orion crew spacecraft.

Notes:
1. These are procurement dollars ONLY, in 2017 $. Estimates do NOT include government program & project management.
2. All estimates are for 1 provider. Generally, for partnerships with multiple partners use 2X the average of lo/hi plus process costs (other early partner investments).
3. Development includes flight test.
4. Ground Ops & Launch, Flight Ops: If a commercial / PPP basis, ground ops & launch and flight ops development are within the development estimate, and ground ops & launch are within the unit estimate. If cost-plus / sole-source, ground ops & launch and flight ops are NOT included in any estimates.
5. Mission Ops: For all estimates, additional costs must be estimated for especially unique in-space operations (rendezvous, mate, transfer of propellant, etc. as apply.)

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Lander Scale & Acquisition Approach} & \text{Apollo Scale Lunar Lander} & \text{Altair Lunar Lander} & \text{Altair Lunar Lander (does not do LOI)} & \text{Mars Lander (ver. 40t Payload, incl. MAV)} \\
\hline
\text{No Prop. Mass (kg)} & 4,214 & 8,392 & 12,829 & 19,881 \\
\text{Mass at Liftoff (kg)} & 15,065 & 30,000 & 45,864 & 71,076 \\
\text{Commercial / PPP - Low} & \text{LO} & $0.6 & $0.8 & $1.0 \\
\text{Commercial / PPP - High} & $0.9 & $1.3 & $1.7 & $2.3 \\
\text{Cost-Plus, Sole Source} & $1.3 & $1.8 & \text{NP} & $2.3 \\
\hline
\end{array}
\]
Sanity Checking

• Reference checks of cost-plus Altair scale lunar lander development $8-12B vs. $21-27B
 • LOW – but we know these references severely underestimated other related elements
 • Accounting issues (NAFCOM-ish estimates often place significant element life cycle costs in other budget lines like program integration, etc.)

• JPL Mars lander estimate in the $44B range (cost-plus? lander $ thru 1st long stay)
 • Roughly consistent with the $36B (cost-plus) here
 • What’s-in / what’s out issues, etc.

• Commercial / Cost-plus relationships the same; what varies are the points of departure

• Lander Costed Baseball Cards
 ✓ Sane (so far) □ Insane
Pros, Cons, Uncertainty

• Pros
 • “Quantifying” and “justifying” factors applied to historical costs
 • Extensive notes / justifications with all adjustments, calculations, deviations from historical data
 • “Justifying” factors – see “Independent Cost Assessment of the Commercial Crew Program”, Booz-Allen Hamilton

• Cons
 • Identified where estimates likely low/high and why

• Uncertainty
 • Esp. complexity – the leap from what we know to what we want

Data sheets available for collaboration upon request
Summary & Forward Work

- Relationships
 - Scaling
 - Complexity
 - Commercial, cost-plus

- Landers
 - Lunar
 - Mars

- Propulsive & Propellant Elements
 - Stages
 - Tankers
 - Depots

- Habitation - next
- More?
Conclusions & Recommendations

• **Significant cost reductions from the norm of cost-plus contracting are possible** for new space system elements in NASA’s exploration scenarios. We analyzed landers and stages across scales and types for life cycle costs, development, and manufacturing (some with operations), if these were acquired using commercial / public private partnerships. There is no basis to conclude that public private partnerships end at low Earth orbit, prohibited or incapable of going beyond that point to deep space, the moon or Mars.

• **Data sheets and cost estimation sheets are available upon request** to assure the broadest dissemination of knowledge, further peer review, and continuous improvement of these life cycle cost estimates to date.

• Including these commercial options in NASA space exploration architectures, that assembly of many space systems for specific missions, could **significantly improve two factors** where NASA exploration programs face difficulties. Deep space systems as public private partnerships could significantly reduce the **cumulative cost of deep space exploration elements** while addressing the **risk of irrelevance**, as reduced costs equal outcomes that are sooner rather than forever a matter for another generation.

• **Lastly, it’s recommended that NASA acquisition processes avoid prematurely favoring one contracting approach over another**, avoiding the preconception very advanced systems must fall under traditional cost-plus like contracting. Partnerships are investments before they might ever be acquisitions. Investment & Acquisition processes should formally place all options on the table and assess NASA needs vs. industry capabilities in a traceable process that creates successful outcomes for NASA while growing the space sector.
The author gratefully acknowledges the extensive collaborative work while supporting life cycle cost analysis in multiple studies under the leadership of Charles Miller, leading to the methodology and many of the results refined here repeatedly in costed baseball cards. Particularly, the 2011 Propellant Depot study (inside NASA), the 2015 Evolvable Lunar Architecture (ELA) study under a grant for NASA, and the 2016 Ultra-Low Cost Access to Space (ULCATS) study supporting the US Air Force. The author also gratefully acknowledges the collaboration and support of Alan Wilhite and Dave Chato, specifically on items such as propellant tankers / stages, propellant depots and technical / performance requirements.
Questions?