TEXTILES FOR LIVING IN SPACE

International Space Station (ISS) and Beyond

Henry Tang, NASA Johnson Space Center / Aerodyne Industries

IFAI EXPO 2017, New Orleans, LA, USA
TEXTILES AND SPACE EXPLORATION

• **Why** use textiles for spaceflight?
• **What** type of spaceflight?
• **How** to select these textiles?
TEXTILES FOR SPACE EXPLORATION

• Human and textiles
 • Textiles are one of the oldest engineering material

• Unique engineering properties
 • Lightweight
 • Flexibility (minimize volume)
 • High strength to weight ratio
 • Composite structure
TEXTILES FOR SPACE EXPLORATION

Two Environmental Categories

Intravehicular Activity (IVA) – Inside spacecraft environment

Extravehicular Activity (EVA) – Outside spacecraft or planetary environment
TEXTILES APPLICATIONS

- Extravehicular Activity (EVA)
 - Thermal insulation blanket and cover
 - EVA tools – tether, restraint, etc
 - Spacesuit fabric layup
 - Inflatable structure
 - Composite material structure

- Intravehicular Activity (IVA)
 - Crew clothing
 - Acoustic insulation
 - Bag and storage containers
 - Sleep station cover, cushion
 - Exercise aids
SPACE / SPACECRAFT ENVIRONMENTS

• Atomic Oxygen (AO) - LEO
• Micro Meteor Orbital Debris (MMOD) - LEO
• Thermal Extreme – LEO (± 250 F)
• Space Vacuum – LEO, Moon, Mars
• Radiation (UV, Ionizing Protons & Electrons, Galactic Cosmic Rays) – LEO, Moon, Mars
• Solar Energetic Particles – LEO, Moon, Mars
• Closed System Environment – close loop life support system compatibility - Spacecraft
• Unique planetary conditions – Moon, Mars
UNIQUE CHALLENGES

- Desirable properties for various spaceflight applications
 - Nonflammable - IVA
 - Low toxicity - IVA
 - Thermal vacuum stable - EVA
 - Dust Resistance - EVA (planetary)
IVA CHALLENGES - FLAMMABILITY

- Flammable material creates fire and safety hazard
- Nonflammable in enrich oxygen spacecraft environment required
- Pass NASA flammability test (NASA-STD- 6001, Test 1) required
 - Bottom ignition upward flame propagation test
 - Burn length < 6”
 - No transfer of burning debris (melt and drip)
- Limit fabric choice for clothing and IVA applications

Flammability of common textile fibers in various oxygen environments

<table>
<thead>
<tr>
<th>Textile Fibers</th>
<th>Earth 21% O₂</th>
<th>ISS Airlock / Cabin 30% O₂</th>
<th>Future Spacecraft > 34% O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton (LOI ~19%)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Polyester (LOI ~ 22%)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Wool (LOI ~ 22%)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Modacrylic (LOI ~ 26%)</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Nomex (LOI ~ 31%)</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>P84 (LOI ~ 33%)</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>FR Cotton (LOI ~ 34%)</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Durette (LOI ~ 38%)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PBI (LOI ~ 38%)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Carbon (LOI > 55%)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Teflon (LOI > 95%)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Fiberglass (LOI ~ 100%)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
IVA CHALLENGES - TOXICITY

- Close loop system promotes accumulation of offgassed products that could create safety hazard
- Low toxicity outgassing required
- Pass NASA toxicity test (NASA-STD-6001, Test 7 or ISO-14624-3)
 - Tested for 72 hours at 122 F
 - Established spacecraft maximum allowable concentrations (SMACs) for contaminants per JSC 20584
 - Toxicity hazard index < 0.5
- May limit the use of coating or textile surface treatment (e.g. FR treatment)
EVA CHALLENGES – THERMAL VACUUM STABILITY

• Textile material outgassing in thermal vacuum environment

• Outgas product such as volatile condense materials (VCM) can contaminates critical space hardware
 • Thermal radiation surfaces
 • Solar panel surfaces

• Pass NASA TVS test (JSC SP-R-0022A and/or ASTM E595)
 • Total mass loss ≤ 1.0 %
 • Total VCM ≤ 0.1 %
EVA CHALLENGES – ATOMIC OXYGEN

- Atomic Oxygen (AO) is an element in the low earth orbit (LEO) environment that degrades certain structural materials
- LEO comprised of 96% AO
- Degradation of materials by oxidation and erosion
- Alter texture, hydrophilicity of material surface properties

Sources of Oxygen + UV \rightarrow O
(Atomic Oxygen)
EVA CHALLENGES - DUST

- Lunar / Mars dust issues
 - Contamination and abrasion of spacesuit materials
 - Contamination of critical EVA hardware surface
 - Contamination of IVA crew cabin and equipment
IVA CASE STUDY – CREW QUARTER

- Crew Quarter / Sleep Station
 - Custom sleeping bag
 - Teflon fabric lined interior for ease of cleaning and maintenance
IVA CASE STUDY - AMCTB

- Acoustic Multipurpose Cargo Transfer Bag (AMCTB)
 - Multi-use concept technology demonstration
 - Convertible cargo bag
 - Acoustic blanket
IVA CASE STUDY – TVIS HARDNESS

- Treadmill with Vibration Isolation and Stabilization (TVIS) Harness
 - Nomex webbing
 - Cotton comfort liner
 - Nomex fabric outer layer
 - Teflon fabric cover
CASE STUDY – SPACESUIT

• Extravehicular Mobility Unit (EMU)
 • Thermal Micrometeor Garmet (TMG)
 • Outer layer – Ortho, Teflon / Nomex / Kevlar ripstop fabric
 • Multi Layer Insulation – aluminum Mylar with polyester scrim
 • Restraint layer – Dacon fabric
 • Micrometeror layer – Neoprene coated nylon
• Bladder layer – polyurethane coated nylon
• Liquid cooling garment (LCG) – polyester fabric with EVA tubing
CASE STUDY – EVA TETHER

- EVA Tether Functions
 - Safety tether
 - Translation anchoring
 - Secure tools and requirement

- Common cord/webbing materials
 - Nomex
 - Fiberglass
 - Vectran

- Unique glass webbing construction for AO resistance
CASE STUDY – BEAM

- Bigelow Expandable Activity Module (BEAM)
 - Inflatable habitat technology demonstration (2016)
 - 565 ft³ of habitable volume
 - Multi-layer fabric construction
 - Fabric & webbing restraint
 - Thermal and MMOD protection
 - Bladder system
BEYOND ISS– LONG DURATION MISSION

- Nonflammable textile fabric for enrich oxygen environment up to 35% O₂
- Lightweight quick drying fabric for exercise clothing
- Nonflammable acoustic insulation nonwoven materials
- Dust resistance spacesuit outer layer fabric for Mars exploration
QUESTIONS & COMMENTS
BACKUP
TEXTILES FOR LIVING IN SPACE

Henry Tang
NASA Johnson Space Center / Aerodyne Industries
IFAI EXPO 2017, New Orleans, LA, USA
VIDEO LINKS

BEAM Deportment

Running in Space

Living in Space