An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions

Edgar Zapata NASA Kennedy Space Center

Presented at
The American Institute of Aeronautics & Astronautics Space 2017 Forum
Session: Space Cost and Economics
Orlando FL, September 12-14, 2017
Context

1. Commercial & Cost Data
 Here – Sept. 13, Space Cost and Economics, 10am-12:30pm
 “An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions”

2. Estimating Costs for New Elements from Data
 Yesterday – Sept. 12, Reinventing Space II, 3:30-6:30pm

3. Exploration Scenarios
 Yesterday – Sept. 12, Space Exploration, 7:30-9pm
 “NASA Human Spaceflight Scenarios Do All Our Models Still Say ‘No’?”
Purpose

• NASA Commercial cargo & crew programs life cycle cost data
 • Organize
 • Quantify
 • Compare
 • Document

Is that a rhetorical point, or would you like to do the math?

I'd like to do the math. –Sheldon Cooper
A Little History First

• 2004 Bush / Vision for Space Exploration (post-Columbia)

End Shuttle after ISS construction finished, and -

“Separate to the maximum practical extent crew from cargo transportation to the International Space Station and for launching exploration missions beyond low Earth orbit”

“Pursue commercial opportunities for providing transportation and other services supporting the International Space Station and exploration missions beyond low Earth orbit”
Fast Forward to 2010

- NASA Commercial Market Assessment of Crew & Cargo Systems
 - NASA Cost Model (NAFCOM) predicted $1.7 – 4.0 billion for Falcon 9 development
 - SpaceX indicated Falcon 9 launch vehicle development was approximately $300 million.

“It is difficult to determine exactly why the actual cost was so dramatically lower than the NAFCOM predictions.”

To date? More reports, debate and discussion!
History

• Much of the debate and discussion – what is commercial?

Office of the Chief Technologist, NASA
https://www.nasa.gov/offices/oct/partnership/comm_space/
Method

• **Public primary sources** – NASA budgets, GAO, IG, etc.

• **Clarity** – lets itemize the bills, set terminology
 • **What** (launcher vs. spacecraft, 4 total), **when** (non-recurring development vs. recurring manufacture & operations), **who** (NASA payments to a company / procurement dollars, NASA management / personnel and other costs, other fund Sources / State of Virginia, private investment by each partner), **how** (Other Transaction Authority / Firm Fixed Price/Commercial/Service vs. traditional/cost-plus), inflation (in what year dollars), process costs (partners not carried forward in the process), failure costs (destruction of cargo, partial payments, loss of a docking ring, private sector losses/cube-sats, etc.), Soyuz purchases awaiting US crew,

 *…it can all sound pedantic, sorry, but it pays off in the end!

• **Quantify benefits too** – “why”
 • *If you find cost estimating difficult, you’re going to love estimating benefits*
Method

• Once we have all these numbers, how do we know if we are doing better or worse?
 • Estimated Shuttle costs – “what-if” still flying in 2017?

• Issues ahead – difficulties in the comparison – but worth a try
 • Esp. comparisons for the same requirements

Cargo spacecraft. Left to right, the Orbital ATK Cygnus cargo spacecraft at the ISS, the SpaceX Dragon cargo spacecraft approaching the ISS, and the Space Shuttle delivering cargo to the ISS via the MPLM cargo carrier inside the Space Shuttle Discovery. Images NASA.
Data – Commercial Cargo Only

NASA Total $953M
Context: COTS = ~10 months Worth of Space Shuttle’s Yearly Upgrades Budget

Compare: NASA Management
Traditional ~13 % COTS = ~2.5X less

Compare: Falcon 9 Cost Plus & NASA Traditional
Estimated ~$3,977 M COTS = ~10X less

Compare: Space Shuttle
~$272,000 per kg of cargo delivered to ISS (via an MPLM)
COTS = ~2-3X less

Up-front Non-recurring Development Costs

Operational Recurring Costs to NASA

Measures

Raw Data

Adjusted Data

NASA Dollars - Acquisition

To -> SpaceX 2006-2011
Company Investment
$454M Nominal $

To -> Orbital ATK 2006-2011
$475M In FY’17 $

Orbital ATK 2006-2011
Company Investment
$412M In FY’17 $

State of Virginia Orbital ATK @ Wallops 2006-2011
$691M Nominal $

$590M In FY’17 $

$90M In FY’17 $

$46M In FY’17 $

= ~5% of the NASA Acquisition $

$39M In FY’17 $

= ~4% of the NASA Acquisition $

NASA Dollars – Management & Execution et al

NASA Dollars – Acquisition - Kistler

Falcon 9 $360M

Dragon $660M

Antares $596M

Cygnus $596M

Total NASA Dollars = $971M (2017$)

2008 Awards

$133M Nominal $

* $168M In FY’17 $

$238M Nominal $

* $299M In FY’17 $

2008 Awards

Requirement
20,000 kg each to ISS

$596M

Capabilities

Falcon 9 / Dragon to ISS @ incl. 51.6 & 400km

Dragon 3,310 kg pressurized or unpressurized

Return cargo

Antares / Cygnus to ISS @ incl. 51.6 & 400km

Cygnus 3,200 kg pressurized or unpressurized

~$135,000 per actual kg of cargo delivered to ISS

~$29,000 per actual kg of cargo delivered to ISS

=> 1,889kg avg. cargo delivered per flight

=> 2,215kg avg. cargo delivered per flight

* Total, including NASA

Data as of SpaceX CRS 11 6/3/2017
ISS Commercial Cargo Recurring Cost (as of SpaceX CRS-11, 6/3/2017) =
actual payments / actual cargo mass

$89,000/kg (SpaceX) to $135,000/kg (Orbital ATK) (2017$)

Failures counted as zero mass delivered but NASA costs incurred

Shuttle “what-if” 2017 if 2 flights a year and a 20,000kg cargo requirement
 - Costs of 2 Shuttle flights per year = apx. 80% of historical yearly costs
 - MPLM average historical cargo delivery = 13,841kg per flight

Shuttle “what-if” 2017 = $272,000/kg
Data – Commercial Cargo Only – FAQs

• Why not load the 2nd Shuttle MPLM to it’s average?
 • Shuttle $197,000/kg
 • Commercial = 50-70\% of the Shuttle “what-if”

• Why not load everything (Dragon, Cygnus, MPLM) to their “maximums”?
 • Similar results as “actuals” = Similar volume limitations?

• Why not compare to a Shuttle flying 5X a year?
 • Shuttle $96,000/kg
 • Slightly higher than SpaceX @ $89,000/kg, less than Orbital ATK @$135,000/kg
 • Issue: Why fly the other 3 Shuttle flights? What is the real requirement?

• What about including (amortizing) development costs in total costs per kg?
 • Similar results.
 • Be clear on year-dollars of any comparison. Shuttle’s $16B development cost is $64B (100\% NASA dollars) in 2017 to amortize over all flights (and possibly a declining flight rate, again, what would have been the requirement?)
..and the big FAQ...

• What about crew?
• The Shuttle also took up crew.
• Both commercial programs go together, cargo and crew.
Data – Cargo & Crew, Non-Recurring Costs (Excludes Launcher)

- **CSM-Apollo (crew to Cis-Lunar)**: $26,700
- **CST-100 (crew to LEO)**: $3,271
- **Cygnus (cargo to LEO)**: $251
- **Dragon 1.0 (cargo to LEO)**: $307
- **Dragon 2.0 (crew to LEO)**: $2,201
- **LM-Apollo (crew to Lunar Surface)**: $14,761
- **Orion (crew to Cis-Lunar)**: $19,466

Average Shown; Uncertainty
Lo $21B, Hi $32B

Total of Actuals to 2024, +Planned to complete

NASA Only Shown Private $ add $345M

NASA Only Shown Private $ add $352M

Total of Actuals to 2024, +Planned to complete

Average Shown; Uncertainty
Lo $12B, Hi $17B

Total of Actuals to 2017, +Planned 2018-2021, +Estimates 2022-2023 to complete
Data – Cargo & Crew, Recurring Costs (Excludes Launcher)

Spacecraft Recurring Price to NASA per Unit, Procurement Only, $M 2017$

- CSM-Apollo (crew to Cis-Lunar): $\$716$
- CST-100 (crew to LEO): $\$418$
- Cygnus (cargo to LEO): $\$174$
- Dragon 1.0 (cargo to LEO): $\$98$
- Dragon 2.0 (crew to LEO): $\$308$
- LM-Apollo (crew to Lunar Surface): $\$732$
- Orion (crew to Cis-Lunar): $\$980$

E. Zapata NASA
5/8/2017

Alphabetical Order ->

- Production Only. An estimate @1 unit a year. If @2 flights year, $\$654M/unit. Scenario if Orion less than 1 Flts/year thru 2046 = $1,672M/unit.
Data – Commercial Crew

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-front Cost to NASA, SpaceX & Boeing only</td>
<td>$2,201M (estimate to completion)</td>
<td>$3,271M (estimate to completion)</td>
</tr>
<tr>
<td>Up-front Costs to NASA, other partners not chosen for later services, Blue Origin, Sierra Nevada, ULA, Paragon</td>
<td>$440M (historical data)</td>
<td></td>
</tr>
<tr>
<td>Operational cost per crew rotation, SpaceX & Boeing (includes everything - launcher, spacecraft,ground operations and launch and mission operations up to the ISS)</td>
<td>$405M (estimated)</td>
<td>$654M (estimated)</td>
</tr>
</tbody>
</table>

Summary of measurable cost data to date, with estimates for forward years, commercial crew to ISS. The up-front development of the Commercial Crew capability is not yet complete, but the nature of these contracts places most cost risk with the commercial partner. This means delays may occur but this should not cause the up-front costs to NASA to rise. Operational costs to NASA per crew rotation derive from public budget documents, contract awards and requirements documentation.

See: Commercial Spaceflight and ISS Crew and Cargo Transportation, BUD-S

See: CCtCap awards
https://www.nasa.gov/content/commercial-crew-program-the-essentials/

Images NASA.
Data – Commercial Cargo **AND** Crew

<table>
<thead>
<tr>
<th>Requirement</th>
<th>US Commercial Cargo & US Commercial Crew Costs per Year (2017$)</th>
<th>If cargo repeats the 2016 experience = 11,218kg total delivered over 4 flights</th>
<th>Space Shuttle Costs per Year (2017$)</th>
<th>If cargo repeats the Shuttle/MPLM experience = 13,841kg delivered each flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo 2 Flights</td>
<td>$335M</td>
<td>$62,597/kg SpaceX Dragon 1.0 & Falcon 9</td>
<td></td>
<td>All cargo flies with crew</td>
</tr>
<tr>
<td>Cargo 2 Flights</td>
<td>$597M</td>
<td>$101,913/kg Orbital ATK Cygnus & Antares / Atlas</td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Crew Rotation 1</td>
<td>$654M</td>
<td>Boeing CST-100 & Atlas</td>
<td>1st Shuttle Flight per Year</td>
<td>$5,046M</td>
</tr>
<tr>
<td>Crew Rotation 2</td>
<td>$405M</td>
<td>SpaceX Dragon 2.0 & Falcon 9</td>
<td>2nd Shuttle Flight per Year</td>
<td>$5,445M</td>
</tr>
<tr>
<td></td>
<td>$1,991M</td>
<td></td>
<td></td>
<td>Yearly $ = 37 to 39% of Shuttle</td>
</tr>
</tbody>
</table>

A holistic view of NASA’s requirement for cargo and crew to the ISS. The apples-to-apples comparison of commercial services versus the Space Shuttle, though curious, starts to break down around here. Most of this is a desirable breakdown, stemming from NASA’s move to separate cargo from crew. Cargo data for 2016 only, the most recent complete year of data.
Data – Commercial Cargo AND Crew

• Stepping back – confirms the prior, but a little low (~Soyuz effect)
Benefits of NASA Commercial Cargo/Crew – Direct

• Most over-looked benefit – the ability to “buy by the yard” - rather than having to “buy the whole bolt of cloth”
 • Also called down-side supply chain flexibility, the ability to reduce costs significantly if the requirement is also reduced significantly

• Redundancy, multiple partners

• Reduced cost risk to NASA – Firm Fixed Price service contracts

• Simplified NASA (civil servants) program & project offices
 • COTS was 5% of funds under management compared to ~13% traditionally

• Learning, potential for reliability growth & further cost improvements
 • Higher flight rate from use of systems by non-government customers
Benefits of NASA Commercial Cargo/Crew – Indirect

• Amortizing costs over government and non-government customers
 • Falcon 9 only; other elements TBD (Dragon, Antares, Cygnus)

• Private capital, a second set of books, leverage
 • NASA’s commercial cargo program *leveraged 1.4 other dollars to every 1 NASA dollar*

• US Economic Benefit
 • As of May 15, 2017, SpaceX has launched 20 payloads for non-US government customers
 • ~ $1.2 billion in other US economic activity that might (likely) otherwise have gone abroad
 • Perspective: NASA invested only about $140M in the Falcon 9 portion of the COTS program (excludes Antares, Dragon, Cygnus)
Benefits of NASA Commercial Cargo/Crew – Indirect

Number of commercial space launches by year. Data through 2014 is from the US Department of Transportation. Data for 2014-2017 through 6/28/2017 comes from tracking individual launches.
Benefits of NASA Commercial Cargo/Crew – Indirect

• Alignment of incentives, true competition

“...builds in an automatic incentive for companies to complete the effort on or under cost and as soon as possible so they can be reimbursed and move forward to the next milestone. COTS companies are also highly incentivized to hold cost and schedule because of our strategy to invest in multiple companies. This engages the engine of competition where companies strive to offer the best value and capture a share of existing markets or create new markets as soon as possible.”

-Commercial Orbital Transportation Services, A New Era in Spaceflight,” NASA, 2014
Issues

• Partner financial health
 • Commercial space is especially hard
• Stakeholder expectations, intangibles
 • A satellite captured by astronauts
 • A reusable first stage returning to the launch site

Loud cheers are hard to quantify!

“questions about the vision boil down to whether we want to incorporate the Solar System in our economic sphere, or not.”

—John Marburger

How NASA’s investments say yes to this vision will be their ultimate measure.
Opportunities

• One word - Plastic!
• No really –
 • Commercial future deep space systems?
 • Habitation?
 • Landers?
 • More?

• Yesterday – two related works
 • Session - Reinventing Space II: “The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements”
 • Session - Space Exploration: “NASA Human Spaceflight Scenarios, Do All Our Models Still Say ‘No’?”
Conclusions

• Rigorous, comprehensive review of NASA commercial cargo and crew cost data, including benefits and issues

“By isolated measures or by the most holistic measures, the ISS cargo partnerships are a significant advance in affordability and the ISS commercial crew partnerships appear just as promising.”
Acknowledgements

The author gratefully acknowledges the assistance and review of Alan Lindenmoyer, Commercial Orbital Transportation Services (COTS) program manager, Allison Zuniga in the NASA Emerging Space Office, and the encouragement and ideas of participants across many NASA centers in NASA Emerging Space Office discussions.
Questions?
Backup
CARGO Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Total Actual Cargo to Date</th>
<th>Average Actual Cargo to Date</th>
<th>Total Recurring Cost to NASA, Cargo to ISS, Incl. Gov’t Costs</th>
<th>Specific Costs to NASA, Cargo to ISS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>kg</td>
<td>$M 2017$</td>
<td>$/kg</td>
</tr>
<tr>
<td>Recurring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launcher / Cargo Carrier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antares / Cygnus</td>
<td>6 successes, 1 failure</td>
<td>15,505</td>
<td>2,215</td>
<td>$299</td>
</tr>
<tr>
<td>Falcon 9 / cargo-Dragon</td>
<td>10 successes, 1 failure</td>
<td>20,774</td>
<td>1,889</td>
<td>$168</td>
</tr>
<tr>
<td>Shuttle / Orbiter / MPLM</td>
<td>11 flights w. MPLM</td>
<td>152,255</td>
<td>13,841</td>
<td>$5,046</td>
</tr>
<tr>
<td>Sierra Nevada</td>
<td>Data pending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-recurring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Investment, Incl. Gov’t Costs</td>
<td>$M 2017$</td>
<td>$M 2017$</td>
<td>$/kg</td>
<td></td>
</tr>
<tr>
<td>Antares / Cygnus</td>
<td>$437</td>
<td>$62</td>
<td>$28,213</td>
<td></td>
</tr>
<tr>
<td>Falcon 9 / Dragon</td>
<td>$495</td>
<td>$45</td>
<td>$23,850</td>
<td></td>
</tr>
<tr>
<td>Shuttle / Orbiter / MPLM</td>
<td>$64,134</td>
<td>$475</td>
<td>$34,322</td>
<td></td>
</tr>
</tbody>
</table>

CREW Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Total Actual Cargo to Date</th>
<th>Average Actual Cargo to Date</th>
<th>Total Recurring Cost to NASA, Cargo to ISS, Incl. Gov’t Costs</th>
<th>Specific Costs to NASA, Cargo to ISS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>kg</td>
<td>$M 2017$</td>
<td>$/kg</td>
</tr>
<tr>
<td>Recurring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launcher / Crew Carrier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas / CST-100</td>
<td></td>
<td></td>
<td></td>
<td>$654</td>
</tr>
<tr>
<td>Falcon 9 / crew-Dragon</td>
<td></td>
<td></td>
<td></td>
<td>$405</td>
</tr>
<tr>
<td>Non-recurring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas / CST-100</td>
<td></td>
<td></td>
<td></td>
<td>$3,271</td>
</tr>
<tr>
<td>Falcon 9 / crew-Dragon</td>
<td></td>
<td></td>
<td></td>
<td>$2,201</td>
</tr>
</tbody>
</table>

Summary Data Table