Cleaning and Cleanliness Measurement of Additive Manufactured Parts

July 18th, 2017

EM22 – Material Test, Chemistry & Contamination Control Branch

Kevin Edwards / MSFC Jacobs ESSSA Group
Eric Fox / MSFC Jacobs ESSSA Group
Mark Mitchell / MSFC NASA
Richard Boothe / MSFC NASA
In Additive Manufacturing (AM), layers of material are deposited and selectively fused or melted to form a three dimensional part. Once completed, remnant material must be removed prior to post production processes. However, this can be difficult if the manufactured component has intricate cavities that can trap remnant bulk powder.

NASA MSFC has already encountered problems related to inadequate remnant powder removal. Case in point, blocked channels within AM components.
Standard Gross Remnant Powder Cleaning Methods

A) Vacuum VS. Compressed Air VS. CO₂ Snow

Progression of cleanliness efficiency. (CO₂ Snow yielded the best results.)

B) Wire Probe / Endoscope

Utilized to remove large machined burrs that may be wedged within internal cavities. Hard to remove from blind holes / deep recesses where wire may not be able to reach. Compressed Air, CO₂ Snow, and even Ultrasonic Cleaning are ineffective.
Computed Tomography Scan

Method Description:

• X-ray inspection technique that produces 70 cross-sectional slices (1 mm) of the test object, providing accurate geometric / dimensional characterization of internal structure & defects.

• Inspection is performed by rotating the test object between an x-ray source and detector array. Individual x-ray slices are taken while the object rotates. These slices can then be reconstructed into 3D volumes to show internal defects and structures.

Equipment:

• 2 MeV linear accelerator and 450 KeV x-ray tube
• Linear x-ray detector array and amorphous silicon digital x-ray area detector
• Can accommodate objects up to 72” diameter/4000 lbs. on large system (spatial resolution of 0.010-0.030”) and up to 10” diameter/50 lbs. on small system (spatial resolution 0.005”)

Component Loaded for CT Scanning

Component X-ray image
Component Analysis – Remnant Powder Locations

<table>
<thead>
<tr>
<th>#</th>
<th>Work Order</th>
<th>ASI #</th>
<th>Slice Height</th>
<th># of Incidents</th>
<th>Observation of Powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2017-V-0393</td>
<td>#1 - As Received</td>
<td>127 - 132</td>
<td>1</td>
<td>Chamber Side Wall, opposite Inlet 1 (40°)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>136</td>
<td>1</td>
<td>Chamber Internal Side Wall, below Inlet 2 (90°)</td>
</tr>
<tr>
<td>3</td>
<td>2017-V-0413</td>
<td>#1 - Doped</td>
<td>127 - 132</td>
<td>1</td>
<td>Chamber Side Wall, opposite Inlet 1 (40°)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>125</td>
<td>3</td>
<td>Chamber Internal Side Wall (45°, 135° & 260°)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>118</td>
<td>2</td>
<td>Chamber Bottom (45° & 135°)</td>
</tr>
<tr>
<td>6</td>
<td>2017-V-0441</td>
<td>#1 - Cleaned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2017-V-0398</td>
<td>#2 - As Received</td>
<td>118</td>
<td>2</td>
<td>Chamber, Interior & Exterior Wall (90° & 125°)</td>
</tr>
<tr>
<td>8</td>
<td>2017-V-0448</td>
<td>#2 - Cleaned</td>
<td>118</td>
<td>1</td>
<td>Chamber, Interior Wall (90°)</td>
</tr>
<tr>
<td>9</td>
<td>2017-V-0402</td>
<td>#3 - As Received</td>
<td>130 - 131</td>
<td>1</td>
<td>Chamber Side Wall, opposite Inlet 1 (10°)</td>
</tr>
<tr>
<td>10</td>
<td>2017-V-0453</td>
<td>#3 - Cleaned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2017-V-0403</td>
<td>#4 - As Received / Doped</td>
<td>117 - 119</td>
<td>2</td>
<td>Chamber Bottom (100° & 180°)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>#4 - Cleaned</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As Received & Doped

- Inlet 1: Level 139, Level 127, Level 115, Level 103
- Inlet 2: Level 139, Level 127, Level 115, Level 103

Cleaned

- Inlet 1: Level 139, Level 127, Level 115, Level 103
- Inlet 2: Level 139, Level 127, Level 115, Level 103
A total of four components were manufactured and cleaned using the prototype method. This method effectively removed process and doped powder from 11 of the 12 excursions. Following CT analysis of the first component, where only one small patch of remnant powder was found, it was decided to dope half of the components for test capability.
Inconel 718 powder was used to dope component #1 by adding powder into the top inlet holes. The part was then shaken for several minutes, then flipped for additional shaking as a means to work the powder into the component.

Powder deposition occurred in different areas as compared to the accrual locations of “As Received” test articles. As a result, the doping process does not appear to represent actual AM powder entrapment mechanisms. It may, however, represent powder dispersal during handling prior to post production processing.
Component # 1 Analysis – Doped VS. Cleaned

Observed Powder @ Elevation 125

Observed Powder @ Elevation 118

Cleaned Component, Powder Removed
Component # 2 Analysis – As Received VS. Cleaned

Powder was observed in two locations. Cleaning removed powder at one location but not at the interior wall / bottom chamber surface. A wire EDM cut of the affected zone did not show the presence of any mechanical defect, thereby indicating that the artifact in question was most likely powder.

Note: Thru Holes added after initial CT scans for cleaning process fixturing.
Component # 3 Analysis – As Received VS. Cleaned

Powder observed at the main cavity side wall on the upper corner.

Following cleaning, the powder is absent.
Component # 4 Analysis – As Received / Doped VS. Cleaned

Powder observed at the bottom main cavity in two locations, cavity angled outlet and at the exterior wall. Remnant powder is absent following cleaning.

Trapped Powder Observed @ Elevation 117 - 119

Cleaned Component, Powder Removed
Acknowledgements

Tate Farms and Stewart McGill: Prototype Beta Test System

Material Test, Chemistry & Contamination Control Branch: Dr. Eric Fox, Mark Mitchell, Richard Boothe (Design Ideas and Test)

Additive Manufacturing / Structural Materials: Dr. Omar Mireles, Ken Cooper, Brian West (Test Fixture & Component Fabrication)

Mechanical Materials & Structures: Dr. Ronald Beshears & David Myers (CT Scans)

Experimental / Mechanical Fabrication: Myron Tapscott, Jeff Clounch, Jim Hargrove (Test Fixture Fabrication)

Materials Test Engineering: Preston Jacobs (CAD Design)

Questions?

Kevin S. Edwards
Contamination Control Engineer
Jacobs ESSSA Group
Materials and Processes Laboratory, Chemistry and Contamination Control
Marshall Space Flight Center, AL 35812
Phone: (256) 961-2676
E-mail: kevin.s.edwards@nasa.gov