Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

Alok K Majumdar
NASA Marshall Space Flight Center, Huntsville, AL 35811
and
S.S. Ravindran
The University of Alabama in Huntsville, Huntsville, AL 35899

Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

Nomenclature

\[
\begin{align*}
A & = \text{cross-sectional area, ft}^2 \\
C_f & = \text{specific heat of the fluid, Btu/lb °F} \\
C_L & = \text{flow coefficient} \\
C_p & = \text{specific heat at constant pressure, Btu/lb °F} \\
D & = \text{diameter of the pipe, ft} \\
f^* & = \text{Darcy-Weisback friction factor} \\
g_c & = \text{gravitational constant, 32.174 lb-ft/lb/ft/s}^2 \\
h & = \text{enthalpy, Btu/lb} \\
h_c & = \text{heat transfer coefficient, Btu/ft}^2\text{-s °F} \\
J & = \text{mechanical equivalent of heat, equal to 778 ft-lb/Btu} \\
K_f^* & = \text{flow resistance coefficient, lb-ft}^2/(\text{lb-ft})^2 \\
K_{rot} & = \text{nondimensional rotating flow resistance coefficient} \\
k & = \text{thermal conductivity, Btu/(ft-s °F)} \\
L & = \text{length of the tube, ft} \\
L_g & = \text{initial length of air column in the pipe} \\
L_l & = \text{initial length for the water volume in the pipe} \\
L_T & = \text{initial total length of liquid and air column; } L_g + L_l \\
\dot{m} & = \text{mass flow rate, lb/s} \\
m & = \text{resident mass, lb} \\
Nu & = \text{Nusselt number} \\
Pr & = \text{Prandtl number} \\
Re & = \text{Reynolds number}
\end{align*}
\]

* Aerospace Technologist, Thermal Analysis Branch, Mail Stop ER43; alok.k.majumdar@nasa.gov. Senior Member of AIAA.
¶ Professor, Department of Mathematical Sciences, SST201M; ravinds@uah.edu. Member of AIAA. (Corresponding Author)
\[n = \text{number of branches}\]
\[p = \text{pressure, \(\text{lb/ft}^2\)}\]
\[\dot{Q} = \text{heat source, Btu/s}\]
\[\dot{q} = \text{heat transfer rate, Btu/s}\]
\[R = \text{gas constant, \(\text{lb-ft/lb-R}\)}\]
\[r = \text{radius, ft}\]
\[S = \text{heat source, Btu/s}\]
\[S = \text{momentum source, lb}\]
\[T = \text{temperature, } ^\circ\text{F}\]
\[t = \text{time, s}\]
\[V = \text{volume, ft}^3\]
\[v = \text{fluid velocity, ft/s}\]
\[z = \text{compressibility factor}\]
\[\delta = \text{tube wall characteristic length, ft}\]
\[\varepsilon = \text{surface roughness of pipe, ft}\]
\[\rho = \text{density, \(\text{lb/ft}^3\)}\]
\[\phi = \text{specific volume, specific heat, or viscosity}\]

Subscripts

\(f\) = liquid state
\(g\) = vapor state
\(i\) = \(i^{th}\) node
\(ij\) = branch connecting nodes \(i\) and \(j\)
\(j\) = \(j^{th}\) node
\(s\) = solid node
\(sa\) = solid to ambient
\(sf\) = solid to fluid
\(ss\) = solid to solid
\(u\) = upstream

I. Introduction

Fluid and thermal transients have significant impact in the design and operation of spacecraft and launch systems. For instance the pressure rise due to the sudden opening or closing of valves of a propulsion feedline can cause serious damage during activation and shutdown of propulsion systems. Efficient chilldown of transfer line is important in cryogenic propellant loading for propulsion systems. Cryogenic transfer line chill down is a transient heat transfer problem that involves rapid heat exchange from solid structures to a fluid with phase change. It is therefore essential that these phenomena are predicted accurately and efficiently. During the past decades, a network flow simulation software based on finite volume method (Generalized Fluid System Simulation Program [10]) has been used to study transient thermo-fluid dynamic analysis of fluid systems and components of significant importance to aerospace and other engineering industries [1,2,3,4,17]. The time stepping scheme employed in this program is very stable for solving fluid and thermal transient problems due to the implicit nature of the scheme. However, the use constant (global) time stepping can be extremely inefficient in multiscale problems because
equidistant time step is governed by the subintervals with the fastest transients, such that in other subintervals much more time steps might be performed than necessary. To the best of our knowledge, the possibility of rigorously monitoring the adequacy of the time step-size and adjust it during the simulation has not yet been studied thoroughly in the field of network flow simulation.

The focus of this article is to propose and study an adaptive algorithm for implicit time stepping scheme for network flow simulation. Adaptive algorithm for time stepping has the potential to substantially improve the accuracy and efficiency of flow simulations. With explicit time stepping schemes, various heuristics based adaptive algorithms have been studied in [5,6,7,8,9]. However, time step in explicit time-stepping schemes is limited by stability conditions such as Courant condition whereas with implicit time stepping schemes it is entirely based on accuracy considerations. While this opens up the possibility of using very large time steps with implicit schemes for simulating steady-state behaviors, it can not capture fast transients often in the beginning of the simulation nor can it capture dynamically changing local phenomenon and/or fast-slow-fast transient patterns in long time simulations. The need for adaptivity with implicit time stepping is further motivated by observation [19] that indicated convergence rate of nonlinear solvers used with implicit schemes is affected by the time step size. However, it is not trivial to incorporate efficient adaptive algorithm with implicit schemes. Because of this, there has been fewer work on adaptive algorithm for implicit time stepping schemes [20,21,22,23]. Also with implicit time stepping schemes, one needs to solve nonlinear equations by iterative methods at every time step and the convergence rate of these iterative methods are known to be affected by the time-step size [19].

Several proposals have been put forward in the literature for adaptive time step selection. In most of the proposals, the time step selection is based on error estimation by comparing solutions computed with different time stepping schemes [20,21,24]. In [21], application of the so-called embedded scheme to incompressible Navier-Stokes equations is discussed. Embedded schemes require solution of a first order scheme and a second order scheme to estimate the error and thus feasible only with higher order schemes. In [20], two implicit second order time stepping schemes were employed (Crank-Nicolson and theta-scheme) to estimate the local truncation error. Therefore, their adaptive time stepping algorithm increases the costs per time step by almost a factor of two. In [24], a explicit Adams-Bashforth and implicit Crank-Nicolson schemes were employed to reduce the computational cost but it introduces the issue of a CFL stability condition. Moreover, these developments are in the context of computational fluid dynamics (CFD). However, the use of CFD in network modeling for propulsion system analysis is not feasible due to its excessive computational overhead.

In this paper, we combine a simple approach of monitoring the change of the solution in two subsequent time steps and proportional-integral-derivative (PID) feedback control to develop an adaptive time stepping algorithm. The algorithm utilizes normalized changes in key variables such as flow rate, pressure and temperature to compute the local errors and adjusts the time step using PID feedback control. In the context of solving ordinary differential equations, PID based adaptive time step selection has been reported in [9]. Our objective is to show the viability of PID control based time adaptivity to network fluid flow simulation. For this we will use two example problems, namely, prediction of pressure surges in a pipeline that has entrapped air at
one end and prediction of chill down of cryogenic feed-lines. The performance of the adaptive time stepping algorithm is compared with the fixed time stepping scheme. Numerical predictions are also validated by comparing the results with experimental data available in the literature. We show that, with adaptive scheme we obtain solutions with a smaller number of time steps without any loss of accuracy.

II. Mathematical Formulation

A finite volume based network flow simulation approach has been used to model the application problems used in the validation study reported in Section IV. A fluid system is discretized into nodes and branches, as shown in Fig. 1. Fluid enters into the flow network through inlet boundary nodes. Mass-conservation, energy-conservation, and species-concentration equations are solved at the nodes, whereas momentum-conservation equations are solved at the branches in conjunction with the thermodynamic equation of state. In conjugate heat transfer problems, the energy conservation equations for solid nodes are solved to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The fluid exits the flow network through the outlet boundary node.

![Figure 1. Typical flow network consisting of fluid nodes, solid nodes, flow branches and conductors](image)

The approach is based on implicit time integration with a pressure-correction and thus the simulation within a time step is iterative. The governing equations to be solved are coupled and therefore must be solved by an iterative method. In order to efficiently solve this system, a partition iterative approach is employed in which a combination of fixed point iteration and Newton iteration are employed. For e.g., the mass and momentum equations are solved for pressure and flow rate by the Newton iteration while the entropy conservation equation is solved by fixed point iteration. The underlying principle for making such a partition is that the equations that are strongly coupled are solved by Newton’s method while the equations which are not strongly coupled with other equations are solved by fixed point iteration. Fixed point iteration method is used to provide initial guess for Newton iterations. Thus the partition iteration approach reduces the computer memory requirement while maintaining superior numerical convergence characteristics. The required thermodynamic and thermophysical properties in all conservation equations during iterative calculation are provided by the thermodynamic property programs GASP [11] and WASP [12].

A. Numerical Methods and Governing Equations
Modeling of the fluid transient using the finite volume method requires the solution of unsteady mass, momentum, and energy conservation equations in conjunction with thermodynamic equation of state. The entire computational domain is split into a set of finite volume with a number of segments.

Figure 2. Schematic of GFSSP nodes and branches in the context of mass conservation equation for node i.

1. Mass Conservation Equation
Pressure at internal node is calculated from the mass conservation equation. Figure 2 is a schematic showing adjacent nodes, their connectivity, and the indexing convention. The mass conservation equation at the i^{th} node can be expressed as follows, and each term has the unit of pounds of mass per second:

$$\frac{(m_i)_{t+\Delta t} - (m_i)_t}{\Delta t} = -\sum_{j=1}^{n} \dot{m}_{ij}$$ \hspace{1cm} (1)

Equation (1) requires that, for the unsteady formulation, the net mass flow from a given node must equate to the rate of the change of mass in the control volume.

Figure 3. Schematic of GFSSP nodes and branches in the context of momentum conservation equation for branch ij.

2 Energy Conservation
The energy conservation equation for node i, shown in Fig. 2b, can be expressed following the first law of thermodynamics and using enthalpy as the dependent variable. It can be written as

$$m \left(\frac{h - \frac{p}{\rho}}{\rho J} \right)_{t+\Delta t} - m \left(\frac{h - \frac{p}{\rho}}{\rho J} \right)_t = \sum_{j=1}^{n} \left\{ \max \left[-m_{ij}, 0 \right] h_j - \max \left[m_{ij}, 0 \right] h_i \right\} + Q_i$$ \hspace{1cm} (2)
Equation (2) shows that for transient flow, the rate of increase of internal energy in the control volume is equal to the rate of energy transport into the control volume minus the rate of energy transport from the control volume plus any external rate of heat transfer from the solid node \(\dot{q}_{sf} \). The max operator used in Eq. (2) is known as an upwind differencing scheme and has been extensively employed in the numerical solution of Navier-Stokes equations in convective heat transfer and fluid flow applications. When the flow direction is not known, this operator allows the transport of energy only from its upstream neighbor. In other words, the upstream neighbor influences its downstream neighbor but not vice versa.

3 Momentum Conservation Equation

The flow rate in a branch is calculated from the momentum conservation equation which represents the balance of fluid forces acting on a given branch; see Fig. 2a. Inertia, pressure, and friction are considered in the conservation equation. It should also be noted that the flow rate, \(\dot{m}_{ij} \), is a vector quantity. A negative value of \(\dot{m}_{ij} \) signifies that the flow is directed from the \(j \)th node to the \(i \)th node:

\[
\frac{(mu)_{i+\Delta t} - (mu)_i}{g_c \Delta t} + \max[m_{ij}, 0](u_{ij} - u_u) - \max[-m_{ij}, 0](u_d - u_{ij})
= (p_i - p_j)A_{ij} - K_{f*}m_{ij}A_{ij}
\]

(3)

The two terms on the left side of the momentum equation represent the inertia of the fluid. The first term is the time-dependent term that must be considered for unsteady calculations. The second term is significant when there is a large change in area or density from branch to branch. The first term on the right side of the momentum equation represents the pressure gradient in the branch. The second term represents the frictional effect. Friction is modeled as a product of \(K_{f*} \), the square of the flow rate, and area. \(K_{f*} \) is a function of the fluid density in the branch and the nature of flow passage being modeled by the branch. To determine \(K_{f*} \), for pipe flow, \(K_{f*} \) is expressed as

\[
K_{f*} = \frac{8f'^*L}{\rho_u \pi^2 D^5 g_c}
\]

where \(L \) is the pipe length, \(D \) is the pipe diameter, and \(\rho_u \) is the density of the fluid at the upstream node of a given branch. The Darcy-Weisbach friction factor \(f'^* \) in the definition of \(K_{f*} \) is calculated from the Colebrook equation [13] which is expressed as

\[
\frac{1}{f'^*} = -2 \log \left[\frac{\varepsilon}{3.7D} + \frac{2.51}{\text{Re \sqrt{f'^*}}} \right],
\]

where \(\varepsilon/D \) is the surface roughness factor and \(\text{Re} \) (equal to \(\rho U L / \mu \)) is the Reynolds number. For flow through a restriction, \(K_{f*} \) is expressed as \(K_{f*} = 1/2g_c \rho_u \frac{C_L^2 A^2}{C_L} \) where \(C_L \) is the flow coefficient, \(A \) is the area of restriction, and \(g_c \) is the conversion factor for engineering unit. It is assumed that the role of the flow coefficient \(C_L \) is independent of the flow direction. The density and viscosity for the Reynolds number are computed from quality, assuming homogeneous
mixture, to account for two phase flow. The momentum conservation equation also requires knowledge of the density and the viscosity of the fluid within the branch. These are functions of the temperatures, and pressures, and can be computed using the thermodynamic property program in [11] that provides the thermodynamic and transport properties for different fluids.

4 Equation of State for Real Fluid

Transient flow calculations require the knowledge of resident mass in a control volume. The resident mass in the \(i^{th}\) control volume is calculated from the equation of state for real fluids:

\[
m = \frac{pV}{RTz}.
\]

(4)

The compressibility factor \(z\) and temperature \(T\) in Eq. (4) are calculated from the thermodynamic property program [11] for a given pressure and enthalpy.

5 Phase Change

Modeling phase change is fairly straightforward in the present formulation. The vapor quality of saturated liquid vapor mixture is calculated from

\[
x = \frac{h - h_f}{h_g - h_f}.
\]

Assuming a homogeneous mixture of liquid and vapor, the density, specific heat, and viscosity are computed from the following relations:

\[
\phi = (1 - x)\phi_f + x\phi_g.
\]

where \(\phi\) represents specific volume, specific heat, or viscosity.

6. Specie Conservation Equation

To model a homogeneous mixture of liquid and gas, the conservation equations for both liquid and gaseous species are solved in conjunction with Eqs. (1), (3), and (4). For mixtures, the concentration of fluid specie must be determined so that the density may be calculated. The concentration for the \(k^{th}\) specie at node \(i\) is:

\[
\frac{(m_i c_{i,k})_{\tau + \Delta \tau} - (m_i c_{i,k})_{\tau}}{\Delta \tau} = \sum_{j=1}^{n} \{\text{MAX} \left[-\dot{m}_{ij}^i,0 \right] c_{j,k} - \text{MAX} \left[\dot{m}_{ij}^i,0 \right] c_{i,k} \}
\]

(5)

Unlike a single fluid, the energy equation for a gas-liquid mixture is expressed in terms of temperature instead of enthalpy. Moreover, it is assumed that the liquid and gas have the same temperature; however, specific heat of liquid and gas are
evaluated from a thermodynamic property program [11]. The density, specific heat, and viscosity of the mixture are then calculated.

7. Energy Conservation Equation for Solid

In fluid-solid network for conjugate heat transfer, solid nodes, ambient nodes, and conductors become part of the flow network. A typical flow network for conjugate heat transfer is shown in Fig. 2b. The energy conservation equation for the solid node is solved in conjunction with all other conservation equations. The energy conservation for solid node \(i \) can be expressed as:

\[
\frac{(mC_pT_s^i)_{t+\Delta t} - (mC_pT_s^i)_t}{\Delta t} = \sum_{j_{ss}} q_{ss} + \sum_{j_{sf}} q_{sf} + \sum_{j_{sa}} q_{sa} + S_i
\]

(6)

The left-hand side of the equation represents rate of change of temperature of the solid node, \(i \). The right-hand side of the equation represents the heat transfer from the neighboring node and heat source or sink. The heat transfer from neighboring solid, fluid, and ambient nodes can be expressed as follows:

\[
\dot{q}_{ss} = k_{ij_s} A_{ij_s} / \delta_{ij_s} (T_{s}^{j} - T_{s}^{i})
\]

(7a)

\[
\dot{q}_{sf} = h_{ij_f} A_{ij_f} (T_{f}^{j} - T_{s}^{i})
\]

(7b)

and

\[
\dot{q}_{sa} = h_{ij_a} A_{ij_a} (T_{a}^{j} - T_{s}^{i})
\]

(7c)

The heat transfer rate can be expressed as a product of conductance and temperature differential. The conductance for Eqs. (5a)–(5c) is

\[
C_{ij_s} = \frac{k_{ij_s} A_{ij_s}}{\delta_{ij_s}}; \quad C_{ij_f} = h_{ij_f} A_{ij_f}; \quad C_{ij_a} = h_{ij_a} A_{ij_a},
\]

(7d)

where effective heat transfer coefficients for solid to fluid and solid to ambient nodes are expressed as:

\[
h_{ij_a} = h_{c,ij_a} + h_{r,ij_a},
\]

\[
h_{r,ij_f} = \frac{\sigma \left[(T_{f}^{j})^2 + (T_{s}^{i})^2 \right] T_{f}^{j/2} + T_{s}^{i}}{1 / \varepsilon_{ij,f} + 1 / \varepsilon_{ij,s} - 1},
\]

and
\[h_{r,ij} = \frac{\sigma \left[\left(T_{f}^{*} - T_{a}^{*} \right)^2 + \left(T_{s}^{*} - T_{i}^{*} \right)^2 \right]}{\frac{1}{\varepsilon_{ij,a}} + \frac{1}{\varepsilon_{ij,s}} - 1}. \]

For the heat transfer coefficient specification we will neglect nucleate boiling and employ the modified Miropoloski’s correlation [14] for two-phase flow:

\[Nu = h_{c}D/k_{v}, \]

where

\[Nu = 0.023\left(Re_{\text{mix}} \right)^{0.8} \left(Pr_{v} \right)^{0.4} (Y), \]

where

\[Re_{\text{mix}} = \left(\frac{\rho D}{\mu_{g}} \right) x + \left(\frac{\rho_{g}}{\rho_{1}} \right) (1-x), \quad Pr_{g} = \left(\frac{C_{p} \mu_{g}}{k_{g}} \right), \quad \text{and} \quad Y = 1 - 0.1 \left(\frac{\rho_{g}}{\rho_{1}} - 1 \right)^{0.4} (1-x)^{0.4}. \]

The neglect of nucleate boiling in cryogenic flows with large initial wall superheat (difference in temperature between the duct wall and the fluid at saturation), is expected to have only a minor effect on the overall chilldown. The reason for this is that film boiling remains down to a relatively low superheat after most of the cooling has occurred. As a result, the amount of heat transfer occurring during nucleate boiling is relatively small when compared to the total heat transfer given the initial temperature difference between the fluid and structure. Furthermore, since heat flux increases as peak heat flux is approached from minimum heat flux in film boiling, the boiling curve passes through the nucleate boiling regime very quickly. It may be also noted that radiative heat transfer and heat transfer to ambient have not been included in the computations presented in this paper because of their negligible effect on chilldown of vacuum jacketed copper transfer lines.

The pressure, enthalpy, and resident mass in internal nodes and the flow rate in branches are calculated by solving the fully coupled, nonlinear system of Eqs. (1), (2), (4), and (3), respectively. There is no explicit equation for pressure. The pressure is calculated implicitly from the mass conservation equation. For a mixture, the conservation of species (Eq. (5)) is solved in conjunction with Eqns. (1), (4), and (3). The energy equation is solved in terms of temperature instead of enthalpy. A combination of the Newton iteration and the fixed point iteration has been used to solve the set of equations. Mass conservation, momentum conservation, and resident mass equations (Eqs. (1), (3), and (4), respectively) are solved by the Newton iteration. The energy and specie conservation equations are solved by the fixed point iteration.

III. Adaptive Time Stepping Strategy

The stepsize selection algorithm presented here monitors the change of key variables in two subsequent discrete times, e.g., as applied to the implicit Euler based finite volume model above.
Based on the relative changes, we would like to compute a correction for the time step size such that computational effort to construct an approximate solution is minimized. Let \(e_n \) be the measure of the relative changes of the quantities of interest in time \(t_n \).

\[
e_n = \max(e^m, e^p, e^h) \tag{8}
\]

In order to measure the changes we use changes in nodal flow rate, pressure, enthalpy etc. by taking where,

\[
e^m = \frac{\hat{e}^m}{tol_m}, \quad \hat{e}^m = \left\| m_n - m_{n-1} \right\|/\left\| m_n \right\|
\]

\[
e^p = \frac{\hat{e}^p}{tol_p}, \quad \hat{e}^p = \left\| p_n - p_{n-1} \right\|/\left\| p_n \right\|
\]

\[
e^h = \frac{\hat{e}^h}{tol_h}, \quad \hat{e}^h = \left\| h_n - h_{n-1} \right\|/\left\| h_n \right\|
\]

are normalized changes in flow rate \(m \), pressure \(p \) and enthalpy \(h \), respectively. Here \(tol_m, tol_p, tol_h \) are user specified tolerances corresponding to the normalized changes in flow rate, pressure and enthalpy. Moreover, the norm employed here is the maximum norm defined by \(\|p\|=\max_i p_i \). In [9], it has been shown that this problem can be viewed as a feedback control problem with PID feedback gain defined by (9).

\[
G = \left(\frac{e_{n-1}}{e_n} \right)^{k_p} \left(\frac{1}{e_n} \right)^{k_I} \left(\frac{e_{n-1}^2}{e_ne_{n-2}} \right)^{k_D} \tag{9}
\]

The control is constructed such that it reduces the time step if the solution change is relatively large and increases it if the change is small. We therefore define the time step by the following formula:

\[
\Delta t^* = G \Delta t^n \tag{10}
\]

where \(G \) is the feedback gain factor defined by and the constants \(k_p, k_I \) and \(k_D \) are the feedback gain parameters. The computational cost in computing the new time-step \(\Delta t_{n+1} \) as described in the Algorithm III.1 is negligible as it involves storing a few extra vectors and computation of norms. If the time step size is too small then a lot of unnecessary computational work has to be done. On the other hand, if the time step size is too large, the results may become too inaccurate. The introduction of the preset smallest time step \(\Delta t_{\text{min}} \) is to force the adaptive algorithm to bound the time step below by \(\Delta t_{\text{min}} \). Likewise, time-step limiter \(\Delta t_{\text{max}} \) gives the upper bound of the time step. Consequently, we require that \(\Delta t \) satisfy \(\Delta t_{\text{min}} \leq \Delta t \leq \Delta t_{\text{max}} \). These limiters reduce both overshoot and control effort in the feedback system. In order to avoid too large or too small values of gain factor \(G \), we introduce gain size limiters \(G_{\text{max}} \) and \(G_{\text{min}} \) such that \(G_{\text{min}} \leq G \leq G_{\text{max}} \). In order to guarantee robustness of the PID controller with respect to PID parameters \(k_p, k_I, k_D \),
parametric studies were performed for different values of the parameters for two example problems. The PID controller was found to be robust for $k_P=0.11075$, $k_I=0.2625$, $k_D=0.0165$.

Algorithm III.1

i. Input: m_n, p, h, Δt_{min}, Δt_{max}, k_P, k_I, k_D, tol_m, tol_p, tol_h, G_{max}, G_{min}

ii. Initialize variables: $e_{n,2}=1.d0$, $e_{n,1}=1.d0$, $\Delta t_n=\Delta t_{\text{min}}$

iii. Compute e_n using (8) and compute G^* using (9)

iv. Set $G=\max(G^*,G_{\text{min}})$ and $G=\min(G^*,G_{\text{max}})$

v. Compute Δt^* using (10)

vi. Set $\Delta t_n=\Delta t$

IV. Numerical Results

In this section, we present two numerical experiments to test the adaptive time stepping scheme presented in Algorithm III.1.

A. Example I: Fluid Transients in Pipe Due to Opening of Valve

The first example involves a long pipe attached to a reservoir containing liquid water at one end and closed at the other end. A ball valve separates the liquid water and entrapped air regions in the pipe, see Figure 5. The controlling parameters such as the dimension of the pipeline, reservoir air column, are taken to be same as the experimental data from [16]. The ball valve is opened from 0% opening to a 100% opening by controlling the angle of the ball valve. It starts opening at about 0.15s and opens 100% in about 4s. The reservoir pressure and initial pressure of entrapped air are taken to be 102.9 psia and 14.7 psia, respectively, so that the ratio of the reservoir pressure to the initial pressure $P_R=7$. The initial length for the water volume in the pipe L_i is fixed to 20 ft and the initial length of the air column in the pipe L_α is taken to be 16.23 ft so that the ratio of the initial length of the entrapped air column to the total length of the pipe $\alpha (=L_\alpha/L_T)=0.448$. The pipe diameter is 1.025 in. The entrapped air and water are initially at 14.7 psia and 60°F, respectively.

The computational domain has been divided into ten nodes, see Figure 4. The reference solution is obtained by using a small constant time step $\Delta t=0.005$ s. Figure 5 shows the computed results for transient pressure at the pipe end (pressure at node 10). The proposed adaptive time stepping algorithm is tested with this water hammer scenario by using an initial time step of $\Delta t=0.005$ s. In all of the examples studied in this paper, the initial timestep size is chosen to allow convergence of the fixed point iterations and the Newton iterations at the beginning of the process. As observed from this plot, numerical results using the adaptive time stepping scheme matches quite well with that of the fixed time stepping scheme results and experimental data. The time step is allowed to adjust between $\Delta t_{\text{min}}=0.001$ and $\Delta t_{\text{max}}=0.01$. The time history for the time step is presented in Figure 8 (left). While pressure varies sharply, the time step is shortened to the minimum value of Δt_{min} and while the pressure varies mildly the time step is increased back to Δt_{max}.

First we compare the computational effort to calculate the solution with constant time step and with adaptive time step. A grid resolution investigation is carried out. For the waterhammer
problem four meshes described in column one of Table 1 are generated. CPU times for simulations with different number of nodes (different number of pipe segments) are compared in 2nd and 3rd columns of Table 1. The results there confirms that in all four cases the computation time was decreased by about 90\%. With the adaptive algorithm one parameter that is critical to its efficiency and robustness is the maximum value of the time step limiter Δt_{max}. As can be seen in Figure 6, CPU time, total number of time steps and total number of (nonlinear) iterations all decrease with increase in Δt_{max} until a critical value and beyond that it does not provide further decrease in CPU time etc. This is not surprising because a larger time step will inevitably mean the solution is computed more inaccurately. This is evident in Figure 7 where adaptive algorithm simulation with three different Δt_{max} are compared with experiment and the results clearly shows accuracy of the solutions is affected by too large a Δt_{max} values. With fixed time step, the nonlinear solver requires 90,473 iterations but only 54,124 iterations are required when adaptive algorithm is applied. As seen in Figure 8 (right), using the adaptive algorithm clearly requires fewer nonlinear iterations at each time step compared to the fixed time step step algorithm.

![Figure 4](image)

Figure 4 Schematic of water hammer experimental setup [15] (top) and a ten-node GFSSP model (bottom).

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>CPU Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adaptive Time Step</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>81</td>
</tr>
<tr>
<td>40</td>
<td>315</td>
</tr>
<tr>
<td>80</td>
<td>1605</td>
</tr>
</tbody>
</table>

Table 1 CPU time with various grid size models for Example 1.
Figure 5. Predicted air pressure using adaptive time-stepping scheme for $Pr=7$ at about 45% initial air volume ($\alpha=0.4491$). Also shown are the predicted air pressure using fixed time step and experimental data.

Figure 6. Effect of time step limiter Δt_{max} on CPU time, total number of time steps and total number of iterations

The time step limiters Δt_{max} affects the CPU time, total number of iterations and total number of time steps needed to complete the simulations. As we can see in Figure 6, CPU time, total number of time steps and total number of iterations all decrease with increase in maximum time step limiter Δt_{max}. However, there seems to be a critical value beyond which increasing Δt_{max}
does not translate into savings in computational effort. In fact, as shown in Figure 7, accuracy of solutions may be affected by too large a values of Δt_{max}.

Figure 7. Transient pressure at the end of the pipe for various values of Δt_{max} for example 1. Also shown is the measured data.

Figure 7 shows the plot of pressure transients for various values of Δt_{max}. It also compares the results with that of the measured data. It is clear from this figure that the accuracy of computed result is affected by too large a values of Δt_{max}. Figure 8 (right) shows the time-step size against time and the number of nonlinear iterations against time with adaptive time-stepping strategy and with fixed time step. In this numerical example, if the step size is bigger than the maximum time step allowed, $\Delta t_{\text{max}} = 0.01$, the number of nonlinear iterations obtained is larger than the maximum number of nonlinear iterations allowed, $\text{ITER}_{\text{max}} = 2000$. As a consequence, we can observe that at the end of the process, the timestep sizes are kept equal to the maximum size allowed.

As we can see the adaptive time stepping strategy produces larger time steps with a decrease in nonlinear (Newton/Fixed point) iterations.

Figure 8. Timestep variation (left) and nonlinear iterations (right) as a function of time with adaptive time-stepping and with fixed time stepping for example 1.
B. Example II: Chilldown of a Cryogenic Pipe Line

Transients found in rocket propulsion system may involve thermofluid transients. The second numerical example involves prediction of chill down of a long cryogenic transfer line. A long pipe is attached to a storage dewar containing liquid hydrogen (LH$_2$) at one end, and it is open to the atmosphere, as shown in Figure 10 (top). Transient heat transfer between the liquid hydrogen and pipe wall causes vaporization of the liquid hydrogen and this phase change causes transient pressure and flow surges. Figure 10 (top) shows a schematic of the experimental setup used by [18], which consists of a 200 ft long, 0.625 inch inside diameter copper tube. The simulations, reported below, used LH$_2$ supplied from the tank at 86.7 psia and at -424.57 °F and exiting to the atmosphere at 12.05 psia. Figure 10 (bottom) represents the numerical model constructed to simulate the chilldown of the pipe. The model consists of 10 fluid nodes (two boundary nodes and 8 internal nodes), 8 solid nodes, and 9 branches. The upstream boundary node represents the LH$_2$ tank, while the downstream boundary node represents the ambient. The first branch represents the valve, the next 8 branches represent the pipe. The first branch represents the valve, the next 8 branches represent the pipe.

![Figure 9. Schematic of cryogenic line chilldown experimental setup [18] (top) and a GFSSP nine-branch model (bottom).](image)

The solid nodes are connected to the fluid nodes by fluid to solid conductors, which model convection from the fluid to the pipe wall. The Miropolskii correlation [14] is used to calculate the convection coefficient for the two-phase flow. Because the pipe is vacuum jacketed, heat transfer between the pipe walls and the ambient is assumed negligible. At the internal fluid nodes and branches, mass, momentum, and energy equations are solved in conjunction with the thermodynamic equation of state to compute the pressures, flow rates, temperatures, densities, and other thermodynamic and thermophysical properties. The heat transfer in the wall is modeled using the lumped parameter method, assuming the wall radial temperature gradient is small. At the internal solid nodes, the energy equation is solved in conjunction with all other conservation
equations.

Figure 10. Comparison of transient temperature for subcooled LH$_2$ for the driving pressures 86.7 psia at four stations. Also shown is the measured data.

The reference results are calculated with constant time step $\Delta t=0.001$s. The predicted temperature history is shown in Figure 10. Stations one to four are nodes whose locations correspond to four measurement locations in the experimental data. These stations are located at 20, 80, 140 and 200ft, respectively, downstream of the tank.

Figure 11. Timestep variation as a function of time with adaptive time-stepping and with fixed time stepping for example 2.
These numerical predictions compare well to the measured temperatures. At this driving pressure the pipe line chills down in about 60s. Small discrepancy exists between prediction and experiments. This is partly due to coarseness of the network node—both solid and fluid—and partly due to the heat transfer coefficient that affects the longitudinal conduction that can be seen by noting that the discrepancy increases at each successive station in the downstream. As can be seen in Figure 10, the numerical model tends to slightly overpredict the cooldown times. Likely reasons for computational results not matching experimental results are (i) inaccuracy of Miropolski heat transfer correlation (ii) representation of friction factor in two phase flow assuming homogeneous mixture and (iii) uncertainty in the experimental data being compared with.

The adaptive time stepping algorithm is tested with this problem by using an initial time step of $\Delta t=0.001s$. The time step is adjusted between $\Delta t_{\text{min}}=0.001s$ and $\Delta t_{\text{max}}=0.007s$. The time history for the time step is presented in Figure 11. Figure 10 compares the wall temperatures of the adaptive time step predictions of the numerical model and the fixed time step predictions over the course of a 100 s simulation. When the time step is adjusted according to the adaptive algorithm between $\Delta t_{\text{min}}=0.001s$ and $\Delta t_{\text{max}}=0.007s$, the accuracy of the results is as good as with constant time step $\Delta t=0.001s$. When the fluid touches the warm pipe walls, heat transfer causes the liquid hydrogen to boil and the pipe wall temperature to rapidly decrease and the time step is shortened by the adaptive scheme. As the pipe chills down to the liquid temperature the time step is increased back to $\Delta t_{\text{max}}=0.007s$.

CPU times for simulations with different number of nodes and constant time step is compared with CPU times for adaptive time step simulations in Table 2. With this example the presented adaptive scheme provides about 65% decrease in CPU time. Moreover, adaptive time stepping reduced the number of nonlinear iterations needed to obtain the solution. With an increased time step the chilldown time prediction become more inaccurate. When the time step is adjusted according to the adaptive algorithm between $\Delta t_{\text{min}}=0.001s$ and $\Delta t_{\text{max}}=0.007s$, the accuracy of the results is as good as with a constant time step of $\Delta t=0.001s$. Yet the computation time step is almost as short as with a constant time step of 0.007s. This proves that the time adaptive technique we have presented is an effective tool to obtain accurate and economical network flow solutions of the rocket propulsion system problems.

V. Conclusion

Adaptive time stepping strategy enables capturing the details of fluid and thermal transients in rocket propulsion systems with significant decrease in computational time. In the presented cases of water hammer and cryogenic heat transfer the computation time was decreased by about 90% and 68%, respectively, without any significant differences in the results. The applied finite volume based network flow simulation scheme is numerically stable for simulating water hammer and cryogenic heat transfer problems due to the implicit nature of the time stepping scheme. Therefore accurate results can be achieved even with long time steps. The proposed adaptive scheme can be used to increase computation accuracy, especially in the early stages of transition, and during short rough phases of flow and thermal behavior that may be encountered in the latter part of the simulation. Moreover, it was shown that adaptive time stepping algorithm
can also improve the convergence behavior of the nonlinear solver associated with the implicit time stepping scheme leading to further reduction in CPU time.

The presented adaptive time stepping algorithm is a general one and can be applied for network simulation study of transient thermos-fluid dynamic analysis of fluid systems and components of importance to aerospace and other engineering industries.

Table 2 CPU time with various grid size models for Example 2

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>CPU Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adaptive Time Step</td>
</tr>
<tr>
<td>10</td>
<td>7,531</td>
</tr>
<tr>
<td>20</td>
<td>15,168</td>
</tr>
<tr>
<td>40</td>
<td>30,222</td>
</tr>
<tr>
<td>80</td>
<td>61,210</td>
</tr>
</tbody>
</table>

Acknowledgments

The work of S.S. Ravindran was supported in part by NASA grant #NNM16AA06A. This author was also supported in part by a grant from NASA Tech Excellence Program. The part work was conducted at Marshall Space Flight Center, Huntsville, Alabama, in the ER43/Thermal Analysis Branch. The authors would like to thank the Thermal Analysis Branch for their support.

References

