Water vapor corrosion of EBC candidate materials

Benjamin Kowalski, Dennis Fox, Nathan Jacobson
NASA Glenn Research Center, Cleveland, OH 44135, USA
Acknowledgements: Bryan Harder

Motivation:
One of the major goals for gas turbine engines is to increase the engine efficiency which necessitates operating at higher temperatures. Increased engine temperatures have been addressed through silicon-based ceramics and composites which have shown great promise as replacements for hot-stage alloy components of gas turbine engines. However, these Si-based materials are susceptible to the effects of water vapor, (Ca-Al-Mg-Si-O) CMAS interaction, and oxidation, among other issues at high temperature. Hence, environmental barrier coating (EBC) materials are sought after to protect next generation high temperature engine components. This study focuses on one aspect of high temperature degradation in EBC materials, namely the recession caused by the interaction of the coating with water vapor.

Background:
In 1997, Opila et al demonstrated that Si-based composites were vulnerable to recession by water vapor at elevated temperature (i.e. oxidation and hydroxide formation. See Eqs. at right)
A protective layer, composed of rare earth silicates (RES), was proposed to protect against recession.
It was found that mono-silicates (i.e. RE₂SiO₅) tended to have better protection against recession over di-silicates (i.e. RE₂Si₂O₇) which led to their use in the current study.

Sample preparation and experimental methodology:
To replicate water vapor conditions in an engine and measure recession, thermogravimetric analysis (TGA) was used under the conditions listed to the right.
Samples are hot pressed in graphite between 1500-1600°C.
Samples are cut into rectangles, polished to remove carbon, and a hole is then drilled for testing.

X-ray diffraction
XRD measured on surface of Pre- and Post- TGA without polishing

Exposure to water vapor
Solid lines are from TGA; Dashed lines are from modeling

Modeling

Scanning electron microscopy
To investigate Lu₂Al₂O₇ at the surface, the weight change of a half Pt coated sample of Lu₂SiO₅ was measured in TGA.
SEM images were then taken of a polished surface to determine Al infiltration depth.
At % ratios are shown for Lu:Si.

References: