The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH₄ main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.

I. Introduction

A GN&C subsystem design concept has been developed to safely and precisely deliver the science payload for the proposed Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission to the surface of the Moon. The science target region is a 100 meter radius region of smooth, basaltic lunar mare terrain near Aristarchus crater with several small, sharp craters and small boulders that pose quantifiable risk to safe landing, and therefore a risk to successful surface science operations. The safe and precise soft landing of
the JSC-developed NASA Autonomous Vehicle for In-situ Science (NAVIS) is accomplished through infusion of NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) into the GN&C subsystem and the infusion of a gimbaled, throttleable LOX/LCH4 main engine. The GN&C subsystem with ALHAT components enables precise descent Navigation of the NAVIS spacecraft and onboard detection of landing sites safe from lander-sized hazards to ensure a safe and precise soft landing within a 20-meter radius ellipse of the target science site.

The science objective for MARE is... Write a 2-3 sentence summary paragraph on the MARE mission science presented in Section 2. The Lunar MARE mission proposal is a partnership between the Southwest Research Institute (SwRI), NASA JSC, and multiple supporting organizations including Arizona State University (ASU), list others?, and the NASA ALHAT team.

The development of ALHAT capabilities has been driven by long term NASA interests to develop safe and precise landing capabilities that enable mission science at terrain locations that pose a significant risk to safe landing or to rover traverses, as well as to enable safe touchdown in the proximity of pre-existing surface assets (e.g., sample caches, assent vehicles, crew assets, etc.). The National Research Council (NRC) has likewise identified safe and precise landing technologies as a high priority need for future Entry, Descent and Landing (EDL) missions for similar reasons. The development of ALHAT has been a cross-NASA effort over the past two decades and includes engineers and scientists from the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), and the Langley Research Center (LaRC).

This paper provides an overview of the Lunar MARE concept science mission, with a focus on the GN&C subsystem for precisely delivering the mission science payload. An overview of the mission science is provided in Section II, and an overview of the NAVIS spacecraft and the GN&C subsystem are provided in Section III. The mission design and descent operations concept are discussed in Section IV, and Section V provides some select GN&C analyses used to inform the NAVIS concept design for the Lunar MARE proposal. Summary remarks are provided in Section VI.

II. Mission Science Overview

Recent crater count analyses have emphasized that we are confident in only 25% of solar system history.

Current models of inner solar system chronology have billion-year uncertainties during the period from one-to-three-billion years ago, due to a lack of lunar samples with well understood provenance. This uncertainty fundamentally affects our understanding of events in solar system history, such as the duration and evolution of volcanism on the Moon, duration of the era of water and volcanism for Mars, and the bombardment environment under which life evolved on Earth (Figure 1). To close this critical gap in lunar chronology, the Lunar MARE Discovery-class mission was proposed. Only by returning to the Moon to fill these sampling gaps can the cratering models be corrected, delivering results of far-reaching importance that span multiple planetary bodies. The MARE mission directly addresses high-priority Decadal Survey goals for new lunar age determinations: “Priority mission goals include... the reconstruction of the impact history of the inner solar system through the exploration of better characterized and newly revealed lunar terrains”.

Understanding the relative timing of geologic events by using crater counting is the keystone to unraveling the history recorded on the surfaces of rocky bodies. Crater counts, in conjunction with radiometrically-dated Apollo and Luna samples, have been used to estimate the absolute ages of events on the Moon. The resulting cratering flux has been extrapolated to Mars, Mercury, Venus, Vesta, and used in models of early solar system dynamics. However, recent analysis indicates four major complications to the crater chronology picture: a) crater-counted terrains may not be the sources of dated samples, b) the need to extrapolate crater count relationships to very young and old terrains, c) crater counts of the sampled terrains result in a wide range of N(1) crater densities, used to model the age of a surface, and d) new data from the LRO (Lunar Reconnaissance Orbiter) Camera (LROC) is revealing many more craters than previously observed.

These problems result in billion-year uncertainties for the history of the Moon and solar system. For example, the era of bombardment of the inner solar system, as recorded by lunar impacts, may have effectively ended ~3.7 Ga ago, or at some younger time. Because life on Earth is thought to have arisen between ~3.7
and ∼3.0 Ga ago, the model improvement could reveal new insights about the habitability of the early Earth. Similarly, the era of liquid water on the Martian surface, which is intimately related to possible life on Mars, as well as the eras of voluminous volcanism on the Moon and Mars, might have ended ∼3 Ga ago, or extended to as recently as ∼1.7 Ga ago. The key to addressing these issues is dating additional samples with well understood provenance, from terrain with undisputed crater counts, and from terrains of age 1-3 Ga. The young lava flows southwest of Aristarchus are ideally suited for this purpose.

After landing southwest of the Aristarchus plateau, samples within reach of the NAVIS lander arm will be assessed, by using onboard imaging and near/thermal infrared mineralogy instruments, and then ranked and prioritized for analysis. The analysis process consists of retrieving a sample with the arm, preparing the sample surface with a grinder, and interrogating that surface for chronologic and compositional information with the Chemistry and Dating EXperiment (CDEX). Visible and infrared landing-site context measurements will be interfingered with geochronology and chemistry analyses throughout the day. A second full lunar day of science measurements is planned as operational margin to ensure mission success.

MARE microscopic geochemistry, mineralogy, and imaging will be used to determine the petrology, and hence the thermal and magmatic history, of young mare flows and then place them in local and regional context. These MARE measurements will provide the first ground-truth for correlation with lunar orbital data, including directly comparable thermophysical and mineralogical measurements. Only MARE can perform this combination of measurements on the Moon, supplying the data required to write fundamentally new chapters of inner solar system history.

III. Spacecraft and GN&C Subsystem Overview

The NAVIS spacecraft design is optimized to support mission science. The top deck of the spacecraft supports the power, avionics, communication, some of the GN&C electronics and hardware, and the static science equipment (not arm mounted), which enables efficient, centralized thermal control for all components. The equipment on the top deck plates is almost completely shrouded by solar panels and radiators, leaving an opening for robotic arm access; the arm is mounted to a landing leg for surface access. Other GN&C and communication instruments, such as antennae, are attached to other landing legs to provide unobstructed fields of view. Figure 2 illustrates the NAVIS spacecraft and includes pointers to visible GN&C, propulsion...
and robotic arm components. The NAVIS design benefits from the extensive technology maturation of the ALHAT precision landing system and the LOX/LCH₄ propulsion system, advanced through 63 integrated flight tests of the NASA Morpheus vehicle and through continued development efforts through other NASA technology development programs.18–26

Figure 2. The MARE NAVIS spacecraft with some visible GN&C, Science, and Propulsion components indicated. Note that the sun sensors, TRN camera, and star trackers are not visible.

The NAVIS GN&C and Propulsion subsystems enable delivery of the MARE science payload to within a 20 m radius landing ellipse at the designated mission science site. Inclusion of NASA ALHAT capabilities onboard the NAVIS provides the situational awareness necessary for the GN&C subsystem to command vehicle maneuvers for a safe and precise soft landing. The throttleable and gimbaled LOX/LCH₄ main engine and 16 Reaction Control System (RCS) thrusters within the Propulsion subsystem likewise provide the precise execution and control authority necessary to implement the GN&C commands for the precise landing at the identified safe location.

Attitude accuracy during orbital transit is analyzed to be within ±0.01°/axis. Guidance design for LLO to maintain orientation.

The GN&C subsystem design provides onboard functionality during lunar transfer and orbital operations, as well as during powered descent to landing. During lunar transfer and orbital operations, the GN&C subsystem conducts autonomous Attitude Determination and Control (ADC) with the onboard Kalman filter processing vehicle Inertial Measurement Unit (IMU) and star tracker data to estimate attitude and rotational rates and the onboard attitude-control logic providing commands to the RCS engines. Trajectory Correction Maneuvers (TCMs) are planned and sequenced from the ground utilizing ground based Deep Space Network (DSN) navigation data and mission planning tools, and the TCM burns are executed onboard with a coordinated pointing maneuver and the Thrust Vector Control (TVC) capability of the main engine. During the powered descent to landing, the GN&C subsystem is fully autonomous, with full state (attitude and translation) navigation, attitude control, and translational guidance. No ground intervention is used (or feasible) during powered descent and landing. Coordinated attitude and translational control during powered descent uses steering logic to convert the guidance profile into TVC of the main engine (for vehicle translation and control of two rotational DOFs – pitch and yaw) and roll control with the RCS.

The GN&C sensor suite includes several high-TRL (Technology Readiness Level) sensors, along with the prototype NASA-developed ALHAT system. The non-ALHAT sensors include one Honeywell Miniature Inertial Measurement Unit (MIMU), two Sodern Star Trackers, and four Adcole Pyramid Coarse Sun Sensors (CSSs). The Honeywell MIMU includes gyroscopes and accelerometers to measure 3-axis rotation rates and 3-axis translational acceleration. The MIMU is TRL 9 and has successfully launched on over 40 space missions. The Sodern Hydra Star Trackers include one Electronics Unit (EU) and two Optic Heads (OH). The Hydra is TRL 9 and multiple units are in current operation in space onboard the SPOT-6 spacecraft launched in 2012, and the SPOT-7, KazEOSat-1 and KazEAOSat-2 spacecrafts that all launched in 2014.
The Adcole Pyramid CSSs have a 2-pi steradian viewing cone and are electrically-passive sensors, making them ideal for use onboard the NAVIS for recovery and safe mode operations. The Pyramid CSS is TRL 9 and has more than 20 years of cumulative spaceflight heritage.

The ALHAT components include sensors, avionics, and algorithms at various TRLs. Figure 3 provides images of the sensor hardware used for the various ALHAT components, which include a Navigation Doppler Lidar (NDL), a Terrain Relative Navigation (TRN) system, and a Hazard Detection (HD) system. The NDL (Figure 3, left) for MARE will be developed and delivered by NASA LaRC. The NDL incorporates a three-beam optical head and a custom electronics unit that houses a laser and multiple electronics subassemblies. The TRN system and HD system for MARE will be developed and delivered by NASA JPL; processing will be performed on a dedicated processor card within the primary spacecraft avionics unit. The TRN system incorporates a Malin Space Science Systems (MSSS) ECAM M50 camera (Figure 3, top right), and the HD system incorporates an Advanced Scientific Concepts (ASC) GEO3D GoldenEye flash Lidar (Figure 3, bottom right).

The ALHAT NDL uses optical homodyne detection of a frequency-modulated, continuous waveform laser beam split into three separate output beams to produce highly accurate measurements of Line-of-Sight (LOS) velocity and range. The beams have angular separation that enable determination of velocity to within 2.5 cm/s and altitude to within 1 m when combining the three LOS beam measurements, each with a range and speed, within the onboard Navigation filter. The prototype NDL can measure LOS velocities up to 200 m/s and LOS ranges up to 4 km. The previous-generation prototype NDL is currently at TRL 5 and has been extensively tested by LaRC onboard a helicopter and the Morpheus Vertical Testbed (VTB) in lunar-like descent profiles. Future testing of the upgraded prototype NDL in Figure 3 (left), which achieves the desired MARE descent performance, is planned onboard a commercial rocket-propelled VTB as part of the ALHAT CoOperative Blending of Autonomous Landing Technologies (COBALT) flight demonstration funded by the NASA Advanced Exploration Systems (AES) Program and the NASA Flight Opportunities (FO) Program. The NDL electronics subassemblies make use of several existing TRL 9 components, as well as components that are being matured through ongoing development efforts within NASA in preparation for flight infusion. The NDL has a development path that will achieve TRL 6 prior to mission Preliminary Design Review (PDR).

The ALHAT TRN system provides global position knowledge that GN&C uses to plan descent maneuvers that minimize the landing position dispersions about the targeted science site. The TRN system uses a passive optical camera, a monochrome ECAM M50, for capturing real-time terrain images for onboard comparison with a-priori reconnaissance imagery and Digital Elevation Models (DEMs) stored in onboard memory. The
reconnaissance data comes from existing Lunar Mapping and Modeling Project (LMMP) data, JAXA data, and new imagery from recent LRO orbital passes near the MARE science region. The TRN software executes on a dedicated RAD750 within the MARE avionics unit with TRN measurement updates every 20 seconds. The ECAM M50 has a 77-degree by 55-degree Field of View (FOV), which provides a large margin for terrain imaging during lunar descent to construct TRN measurements. The ECAM M50 will be TRL 8 upon delivery to the NASA Science Mission Directorate (SMD) OSIRIS-REx mission in June 2015 and TRL 9 following launch in September 2016. The TRN algorithms were developed by JPL and tested to TRL 6 onboard a helicopter and a NASA FO Program rocket-propelled VTB in 2014.

The ALHAT HD system uses a 128x128 pixel flash Lidar, an ASC GEO3D GoldenEye, with a 6° x 6° FOV to collect a three-dimensional (3D) point cloud of terrain data in real time and relative to the spacecraft. The data is analyzed onboard within 5 seconds to identify safe landing sites based NAVIS vehicle geometry and hazard tolerances (40 cm roughness and 10° slopes for the MARE NAVIS design). The analysis is performed with a HD algorithm that executes on the ALHAT-dedicated RAD750 within the MARE avionics. The HD capability generates a local measurement of terrain hazards that are undetectable in a-priori reconnaissance data, which minimizes landing risk for vehicles that have hazard tolerances smaller than the hazards detectable in reconnaissance data. The ASC GEO3D GoldenEye will be TRL 8 upon delivery to the NASA SMD OSIRIS-REx mission in June 2015, and TRL 9 following launch in September 2016. The HD algorithms and system has been in development, testing, and evolution within ALHAT and related projects for several years within NASA and have undergone numerous flight tests onboard helicopters and the Morpheus VTB.

The NAVIS propulsion subsystem utilizes a GHe pressure-fed cryogenic LOx/LCH₄ propulsion system in which 2 oxygen propellant and 2 methane tanks fed propellants to the RCS engines and main engine through an integrated cryogenic feedsystem. The high performance and “green” LOX/LCH₄ is clean-burning, non-toxic, and space-storable. The Morpheus VTB successfully demonstrated this single-stage LOx/LCH₄ technology capability at a vehicle system level. The propellant tanks contained slosh baffles and the feedsystem was designed to maintain equal propellant draining for the four propellant tanks. These design elements are retained in the NAVIS propulsion system design. For the MARE mission, the NAVIS vehicle uses the single-stage propulsion system to perform all vehicle maneuvers (for a total mission ∆V of 2987 m/s) that occur following launch vehicle separation, which is after the launch-vehicle performs a Trans-Lunar Injection (TLI) burn. The main engine is continuously throttleable at a 5:1 ratio, with thrust from 7900 N to 1580 N. The RCS is comprised of sixteen 31-N LOX/LCH4 engines, which ensures redundancy for enhanced mission reliability. Pulsing the RCS engines on for 40 ms with fast-response cryogenic solenoid valves provides a Minimum Impulse Bit (MIB) of 0.35 N-s to ensure vehicle control stability. MIB durations of 40 ms were demonstrated on the Morpheus VTB in 2014 for a scaled 80-N version of the RCS engines. The MIB produces a rate increment (i.e. angular rate change for MIB firing) at 1/4 of the control rate deadband (i.e. upper to lower rate limit), providing 300% margin against limit cycling.

IV. Mission Design and Precision Landing Operations Concept

The trajectory design for the MARE mission provides adequate performance to set a spacecraft down at the specified lunar latitude and longitude for the mission science (latitude = 23.4°, longitude = -60°, altitude = 0 m) and at a desired epoch, while meeting associated vehicle and trajectory requirements. Launch readiness is targeted for 2021. The mission design produces monthly mission opportunities with multiple daily launch opportunities for each monthly opportunity. Figure 4 illustrates the mission events. The MARE mission launches (Figure 4, Event 1) due east on an Atlas V 411. The launch vehicle delivers the MARE NAVIS spacecraft to a temporary Low Earth Orbit (LEO) (Event 2) that is nearly coplanar with the lunar transfer orbit. After LEO insertion, the combined upper stage and MARE NAVIS spacecraft coasts to a preferred phase location for the TLI burn (Event 3), which achieves a transfer target to a lunar intercept anywhere from 3 to 8 days after Earth departure, depending upon the selection of one of several daily launch opportunities in a particular month. After TLI, the MARE NAVIS spacecraft separates from the booster upper stage (Event 4), and the upper stage performs a retargeting maneuver for a safe disposal.
1. The transportation begins at Earth launch and ends at lunar touchdown
2. The launch vehicle places the spacecraft into a (circular) low Earth orbit (LEO) phasing orbit which allows the spacecraft to coast to the proper location for the Earth departure stage (EDS) to perform Trans-lunar injection (TLI)
3. TLI occurs
4. EDS jettison follows TLI
5. Up to three trajectory correction maneuvers (TCMs) can be performed enroute to the Lunar orbit insertion (LOI) target. An optional 4th maneuver.
6. LOI captures the spacecraft into low lunar orbit (LLO) using a single co-planar burn
7. De-Orbit Insertion (DOI) places the spacecraft on a pre-landing phase transfer orbit
8. Powered Descent Initiation (PDI) begins the powered descent phase
9. Powered landing takes the spacecraft to lunar touchdown

It consists of 3 primary phases

1. Braking phase
2. Pitchup/Throttledown phase
3. Approach and terminal landing phase

The spacecraft continues on a trans-lunar coast to a Lunar Orbit Insertion (LOI) target and performs all post-TLI propulsive maneuvers with the onboard propulsion system. While en-route to LOI, the outbound trajectory design accommodates three (an optionally four) Trajectory Correction Maneuvers (TCMs). These TCMs (Events 5) are only performed if the spacecraft trajectory is significantly dispersed from its planned trajectory.

At lunar arrival, the LOI maneuver (Event 6) places the MARE NAVIS spacecraft into a retrograde 100km-altitude circular Low Lunar Orbit (LLO). The retrograde LLO (in conjunction with the launch epoch) ensures that the landing phase will occur over sunlit terrain, with the sun behind the spacecraft at a low elevation angle of approximately 10°. This sun angle provides adequate lighting for successful ALHAT TRN and lands the MARE NAVIS spacecraft near lunar dawn. The spacecraft remains in LLO for approximately 3-4 revolutions during which time the ground-based orbit determination/navigation prepares for the Descent Orbit Initiation (DOI) maneuver (Event 7). The DOI maneuver reduces the pericynthion from 100 km to about 15 km altitude. Variation in the post-DOI periapsis altitude does not have a strong impact on the powered descent ΔV cost, so a positive pericynthion provides a once around capability in the event of a failed Powered Descent Initiation (PDI) maneuver (Event 8), thus enhancing the possibility of mission success with negligible performance impact. PDI marks the beginning of the powered descent arc (Event 9): a continuous main engine burn which ends with touchdown on the surface of the Moon. PDI occurs near pericynthion, about a half a rev after the DOI maneuver (about an hour).

Figure 5 illustrates the nominal powered descent profile to the lunar surface and includes the onboard Guidance segments and the active periods for GN&C sensors, including ALHAT sensors. The powered descent consists of the following segments: Braking, Pitch Up/Throttle Down, Approach, Divert, Pitch to Vertical, and Terminal Vertical Descent (TVD) to touchdown. The ALHAT sensors include passive-optical Terrain Relative Navigation (TRN), Navigation Doppler Lidar (NDL) velocimetry/ranging, and HD (Hazard Detection) for safe landing site determination. A specialized descent Navigation filter fuses the ALHAT measurements to provide global and local state knowledge to ensure precise and safe soft landing within the targeted science region. An onboard Autonomous Flight Manager (AFM) monitors both the descent timeline and navigation states to trigger each guidance mode, sequence the ALHAT sensors and control spacecraft attitude.

The PDI burn initiates the Braking phase, a fuel-optimal maneuver, which uses a high throttle setting to efficiently reduce energy. The onboard Navigation filter used during powered descent is initialized from the ground tracking state following the final Deep Space Network (DSN) observation of the MARE NAVIS vehicle that occurs approximately 90 minutes prior to the DOI burn. Following this initialization, the Navigation estimate is updated with onboard measurements from the vehicle IMU (and initially two star trackers prior to the PDI burn) until the TRN system is active at approximately 13 km altitude down to approximately 500 meters altitude.

The NDL is active from approximately 1.2 km altitude until approximately 50 meters altitude. The NDL measurements commence prior to the completion of TRN, which ensures a blended steady-state Navigation filter solution and minimization of filter position error growth following TRN cutoff. The NDL optical head
Divert
Approach
Star Tracker
15km
alt.
Pitch Up
Throttle Down
Braking Phase
PDI
burn
cost
13km alt.
500m alt.
130m alt.
HD
5 sec.
duration
NDL
TRN
Landing
Precision
Science
Region
IMU
touchdown
Pitch to
Vertical

Figure 5. Nominal Powered Descent Profile with Guidance Modes and Active ALHAT Sensors

(illustrated on the spacecraft in Figure 2) is positioned so that the three beams nominally point in the forward direction of flight during Braking and toward the aft direction of flight during Approach. The Approach phase pitches the vehicle up to 80° at reduced throttle and sets up for onboard Hazard Detection (HD) at a 130 meter altitude (and a 160 meter slant range to the initial landing target). Analysis of smooth lunar maria terrain with up to 10% rock abundance, the terrain type for the MARE science, indicates abundant safe sites reachable within a 10-meter divert, which together with the GN&C knowledge uncertainty provides safe pinpoint landing to greater than 99% probability within the 20 m radius (3-sigma) landing ellipse.

The safest landing site identified through HD is passed to the onboard AFM, which initiates a Guidance replan and commands a small, subsequent Divert maneuver to start TVD from above the safe landing site. The onboard Navigation filter continues to process high-precision NDL velocity measurements and LOS range measurements through Approach and Divert, which enables onboard GN&C to autonomously command maneuvers to minimize lateral vehicle velocities to establish TVD from 50 meters altitude above the safe site. The NDL is shut off below approximate 30 meters altitude during TVD to avoid spurious measurements that could occur when dust is kicked up from the plume-soil interaction. The Navigation filter dead reckons on the IMU during this final segment, which ends with a 1 m/s downward velocity touchdown on the lunar surface. During TVD, the NAVIS spacecraft is also oriented to point the radiators toward local North and the solar array centerline to within 5° of the local East-West line, maximizing thermal dissipation and power generation. Touchdown is sensed with onboard contact logic that is based on algorithms developed and repeatedly tested on Morpheus. The combination of the direct NDL velocity measurements following TRN and the final dead reckoning on the high-precision IMU minimizes Navigation error growth in position and velocity estimates and ensures a soft touchdown. Touchdown occurs shortly after lunar dawn (with a Sun elevation of 10°), which maximizes the amount of sunlight time for surface science operations. Touchdown on the surface begins the surface operations phase.

V. GN&C Performance Analysis

V.A. Landing-Ellipse Analysis

A LinCov (Linear Covariance) analysis was performed on the descent Navigation system design. The analysis was used to assess GN&C ability to achieve a precise landing within the science target ellipse of 100-meter radius, including a hazard avoidance divert (of up to 10 meters) to the detected safe landing site. The LinCov analysis also facilitated a trade study of landing precision with different combinations of GN&C and ALHAT sensors.

The LinCov analysis timeline started with the final ground-based Navigation update (prior to the DOI burn in lunar orbit) and ended with touchdown, which coincides with the timeline for NAVIS autonomous onboard Navigation. The analysis initialization was based on a nominal ground-based Navigation uncertainty
for the final DSN observation of the NAVIS spacecraft in LLO. The descent trajectory timeline for active GN&C and ALHAT measurements followed the sensor sequence illustrated in Figure 5. Noise and bias models for the star tracker and MIMU were from published vendor specifications, and models of the ALHAT sensor uncertainties (TRN and NDL) were based on results from simulations and tests conducted within the ALHAT team. The positions and orientations for the optical sensors mimicked the layout onboard the NAVIS vehicle (Figure 2), and the trajectory profile came from the mission design trajectory.

Table 1 summarizes two LinCov analysis cases: one that considered the ALHAT TRN and ALHAT NDL for the descent sensors (with the NDL providing both velocity and range), and another that considered ALHAT TRN and a spaceflight-qualified altimeter (rather than the NDL). The entries summarize the 3-σ landing footprint uncertainty and the landing velocity uncertainty. The attitude uncertainty is not shown because the MIMU is used in all cases (final attitude knowledge on landing is within ±0.02°/axis, 3-σ).

<table>
<thead>
<tr>
<th>Descent Sensors</th>
<th>Footprint Error (m)</th>
<th>Altitude Error (m)</th>
<th>Velocity Error (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRN + NDL</td>
<td>6</td>
<td>0.8</td>
<td>0.03</td>
</tr>
<tr>
<td>TRN + Altimeter</td>
<td>19</td>
<td>0.7</td>
<td>0.2</td>
</tr>
</tbody>
</table>

The results from the LinCov trades drove selection of the NDL for the GN&C sensor suite. Although the science requirement on the landing ellipse was a 100-meter radius, the internal design goal was landing within a 20-meter radius ellipse, including the divert maneuver to the safe site, in order to ensure a minimum of a 3X margin in landing position dispersions. The TRN + Altimeter case, when considering up to a 10-meter divert, was on the edge of the desired 3X margin, whereas the TRN+NDL design option provided better than 5X margin with the maximum divert. The tight performance of the TRN+NDL option is enabled by the precise and direct velocity measurements from the NDL, along with its range measurements, that minimize Navigation position-error growth after the completion of TRN measurements. The combined TRN+NDL provided a final altitude uncertainty on par with the TRN+Altimeter option, as well. The TVD phase ends at a constant 1 m/s downward velocity with main engine shutdown planned between 2-3 meters altitude, which is within the altitude uncertainty, to reduce plume impingement on the local terrain and scattering of desired science samples. A preliminary assessment of this descent strategy shows that engine cutoff at 3 m altitude is also well within the design margin for the landing energy attenuation system.

V.B. Flight Control Analysis

The NAVIS spacecraft flight control analyses address all phases of flight as shown in Figure 4, mainly the lunar transit, the LLO operations, and the powered descent. For the lunar transit and the operations in LLO, the Flight Control System (FCS) is required to provide 3-axis rotational control for slewing and pointing the spacecraft for communication and for power and thermal balance. The FCS is also required to slew and maintain attitude control while performing delta-V burn using the main engine for TCMs, LOI and DOI. Similarly, for the powered descent, the FCS is required to execute closed-loop guidance to gently land the spacecraft at the ALHAT designated safe site.

The LOX/LCH$_4$ RCS is resized and include additional thrusters (compared to the Morpheus vehicle) to provide 3-axis rotational control with coupled torque to minimize translational disturbances and for redundancy. Control analyses assessing angular rate increments due to different RCS thrust magnitude and profile, converged on the required thrust performance and MIB. The FCS design utilizes phase plane logic for each rotational axis, similar phase plane logic used on the Morpheus test vehicle. Phase plane control parameters, attitude and attitude rate dead-bands, are determined based on the RCS thruster performance and MIB to target better than the ±5°/axis pointing accuracy required for solar array pointing. Long duration attitude hold simulation analyses in cis-lunar and LLO, using ±1°/axis and ±0.25°/sec/axis attitude and attitude rate dead-bands, demonstrated better than required attitude control performance and provided good estimated of RCS thruster firing duty cycle and propellant usage. Large angle rotational maneuvers
(slews) utilize an Eigen-axis maneuver rate logic with selectable maneuver rate limit (0.15-1.0°/sec) to meet vehicle constraints and mission requirements. Cumulative thruster firing duty cycle from simulated operations throughout all phases of flight is utilized as design and qualification requirements for the RCS.

Translational control for powered descent utilizes a thrust vector control logic similar to one used on the Morpheus vehicle. An outer translational control loop is housed in the Guidance function where a Proportional-Derivative (PD) feedback control law is applied to the vehicle position and velocity errors, with respect to the Guidance trajectory, to produce the desired vehicle acceleration command vector, \(\lambda \). A steering logic within the Control function converts the Guidance acceleration command (\(\lambda \)) into attitude and attitude rate commands. An inner-loop Proportional-Integral-Derivative (PID) feedback control law is applied to attitude and attitude rate errors to gimbal the main engine to rotate/tilt the vehicle and thrust vector it to generated the desired net acceleration. Powered descent and landing utilize both TVC and RCS to execute the Guidance acceleration profile required for precision landing (to decelerate and orient the vehicle for pointing of ALHAT sensors). During the Approach (ALHAT HD) phase, the FCS maintains the vehicle attitude to within \(\pm 1\degree \)/axis briefly for imaging of the targeted science site to ensure determination of a safe landing site that results in the desired 20 m landing ellipse. Following acquisition of the HD imagery, the FCS resumes the Guidance commanded trajectory along the powered descent profile in Figure 5. Similar to the Morpheus vehicle, the NAVIS FCS also includes a vertical control system for generating delta throttle commands that ensure TVD and touchdown at a final descent rate of -1 m/s within \(\pm 0.15 \) m/s.

V.C. Terrain Relative Navigation Design Analysis

The ALHAT-dedicated RAD750 executes the TRN software, which extracts landmark matches by automatically matching local windows of descent image data to the a-priori orbital reconnaissance map stored onboard. The landmark matches are then fused with the IMU data to estimate the position, velocity, and attitude of the vehicle. Benchmarks on the TRN algorithm performance at JPL for Mars descent scenarios have shown that the code running on a RAD750 takes 20 seconds to match three landmarks between a single descent image and a 1024x1024 pixel reconnaissance map. This benchmark was for an extreme Mars landing case where the initial position uncertainty was twice the altitude of the lander. For the MARE lunar scenario, the position uncertainty will never be larger than 1km, which will result in faster processing times. However, for GN&C subsystem concept development the 20-second processing time is used.

The passive optical TRN algorithms and software have been tested extensively in real-time system field tests and in high fidelity simulations of lunar landing. In February and March 2014, the TRN system was tested on a helicopter flying over planetary analog terrain. The TRN system computed position, velocity and attitude in real-time with no human intervention. The position errors when compared to GPS from 100+ runs were contained within a 30m radius circle when the helicopter flew at 3km altitude. In a follow-on test the same system showed position errors less than 3m at and altitude of 300m. These results show that the position error is typically 1% of the altitude, given the existence of orbital reconnaissance maps with pixel sizes on the order of the camera pixel footprint. This rule of thumb is also consistent with off-line landmark matching of airplane field test imagery and full IMU and image fusing from a sounding rocket data set.

Extensive analysis was also performed in simulation to assess TRN performance with respect to lunar terrain and illumination. Figure 6 shows an example descent image and map generated for a 3° sun elevation angle. The terrains and images were generated using the DEMMaker software developed at APL. Since Lunar MARE will be landing near lunar dawn there can be significant shadowing, so the sensitivity of TRN to sun illumination must be understood. Figure 7 shows horizontal position error and success rate (defined as percent of runs with position error less than 100m) for increasing sun elevation angles for the case where the sun elevation angle is the same for the map and the descent image. These results were for terrain that resembles the Aristarchus region (the science target for MARE). TRN is clearly insensitive to sun elevations above 5°, which is less than the 10° sun elevation planned for Lunar MARE landing.

Figure 8 shows the TRN sensitivity when the sun illumination differs between the descent image and map. Sensitivities at 5° and 45° elevation angles bound the 10° condition for Lunar MARE. These results
show that, in the worst case, the map azimuth can vary by 15° and the map elevation can vary by 1-2$^\circ$ from the descent image. These constraints are fairly tight, but, if necessary, differences in illumination can be mitigated by re-rendering the map to the expected descent image illumination conditions.\footnote{32}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example_descent_image_map_image_matches.png}
\caption{Example descent image (left) and map image (right) and corresponding landmark matches.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{trn_sensitivity_sun_elevation.png}
\caption{TRN sensitivity to sun elevation angle when map and descent image are have the same illumination conditions.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{trn_sensitivity_sun_illumination.png}
\caption{TRN sensitivity to differences between map and descent image illumination conditions.}
\end{figure}

\section*{V.D. Landing Risk Assessment and Hazard Detection Design Analysis}
A landing risk assessment was performed for the Lunar MARE mission to determine the need for an onboard HD system. The assessment was based on Monte Carlo simulations similar to past JPL HD analyses.\footnote{33} The assessment incorporates terrain rock abundances, the flash Lidar chosen for the HD system, the geometry and hazard tolerances for the NAVIS spacecraft, and the knowledge uncertainty anticipated from the descent
Navigation filter. Figure 9 provides the results of the analysis for safe landing probability with and without onboard HD for a range of rock abundances.

As shown on the right in Figure 9, even for 0% rock abundance there is still a 5% probability of landing failure without HD due to the modest 10° slope tolerance of the NAVIS spacecraft; this confirms that a HD system is required. As shown in the left plot of Figure 9 when HD is added, the safety of the onboard-determined safe site decreases as the slant range (and image footprint) decreases because there are fewer choices from which to select a safe site. Furthermore, as the rock abundance increases the landing site safety decreases because the terrain is becoming increasingly hazardous. Specifically, this analysis shows that when the slant range is greater than 140 m, the HD algorithm selects sites that are 99% safe for rock abundances up to 10%. As shown on the right in Figure 9, this is an improvement from a 50% chance of successful landing to a 99% chance of successful landing. At 20% rock abundance the detection performance degrades to around 93%, at 160 m slant range, which is still excellent given that only 10% of the terrain in the range image is actually safe. Overall, the HD system performance makes a dramatic improvement in the probability of safe landing in hazardous terrain.

Design of the HD system design for Lunar MARE leveraged previous studies of hazard detection for lunar landing. The prior studies indicated that rock hazard detection requires six range samples across the hazard to obtain sufficient measurements to adequately sample the top of the hazard. Furthermore, a hazard needs to be six times the pixel-to-pixel range noise in height before it can be robustly distinguished from the ground plane. When these rules of thumb are applied to the 40 cm hazard detection threshold for the NAVIS spacecraft, the Ground Sample Distance (GSD), or spacing between measurements on the ground, needs to be no more than 13 cm between samples and the range precision must be better than 6.7 cm (1-σ). Note that the GSD spacing makes the reasonable assumption that a hazardous rock’s width is twice its height. The ASC GEO3D GoldenEye achieves these requirements. Terrestrial testing with the ASC TigerEye flash Lidar, has shown that each range measurement has a pixel-to-pixel range precision of 6 cm (1-σ); the TigerEye and GoldenEye use the same focal plane array, so the performance will be comparable. From a range of 160 meters, the GoldenEye achieves the 13 cm GSD, which coincides with a 17 m × 17 m Lidar image footprint on the terrain surface. For the NAVIS geometry, a 17-meter footprint contains 9 disjoint 5-meter-diameter regions over which safe sites can be detected. This area is large enough to guarantee a safe landing site within the targeted smooth maria terrain. The 17-meter footprint is also small enough to avoid selection of a safe landing site outside of the 100-meter diameter targeted science ellipse (when considered alongside the precise landing achievable with TRN and NDL sensors, as discussed in Section V.A).

The time available for HD is less than five seconds to allow collection of the flash Lidar image (at the
above specified 160 meter range), processing of the HD algorithm on the ALHAT-dedicated RAD750 to determine the safe site, and execution of the divert maneuver in time to transition into TVD from a 50 meter altitude (Figure 5). The single flash Lidar image needed for safe site selection is collected in 0.1 seconds, so most of the HD time is allocated to the safe site selection algorithm. JPL has developed a fast hazard detection algorithm called Simple Safe Site Selection (S4) and has tested it with synthetic flash Lidar images and real TigerEye Images. The algorithm has been benchmarked at 1.25 seconds on a 66MHz flight processor and should be execute in half that time on a 133MHz RAD750 flight processor.

VI. Summary Remarks

Summary remarks on mission, spacecraft design, GN&C performance analysis, and GN&C subsystem design to achieve science drivers.

Acknowledgments

The development of the Lunar MARE proposal was a collaborative effort by a large team of engineers, scientists and staff within JSC, SwRI, ASU, JPL, LaRC and many other organizations. We would like to acknowledge the MARE team, the ALHAT team, and the Morpheus team in general for the body of written content and references that we drew from in the development of the MARE proposal and this paper. We would like to specifically acknowledge the support of Eric A. Hurlbert, John C. Melcher, and Robert L. Morehead for their support in conveying the NAVIS Propulsion subsystem content within this paper. Proposal involvement by the Jet Propulsion Laboratory, California Institute of Technology, was performed under contract with NASA (Government sponsorship acknowledged).

References

