Evaluation of Mid-Size Male Hybrid III Models for use in Spaceflight Occupant Protection Analysis

J. Putnam¹, J. Somers¹, J. Wells², N. Newby¹, N. Currie Gregg³, C. Lawrence⁴

¹KBRwyle, Houston, TX
²Leidos, Houston, TX
³NASA, Houston, TX
⁴Analytical Mechanics Associates, VA
Overview

• Background of the Hybrid III & FE Model
• NASA Occupant Protection Environment & Challenges
• Approach to meet those challenges (current study)
• Results & Interpretation
• What to do with these results
Hybrid III Anthropomorphic Test Device (ATD)

- Mid-size male developed in the 1970s for automotive testing
- Designed for frontal, automotive, severe crashes
- Steel and rubber architecture
- Limitations
 - Not intended for lateral use
 - Neck response limited outside design
 - Automotive Seating Posture
Implementation of Hybrid III

- **Injury Assessment Reference Values (IARV)**
 - Transfer function between mechanical response & human injury
 - Used to establish vehicle standards

- **Vehicle Testing**
 - Standard Evaluation
 - Design Optimization

- **Limitations**
 - Cost
 - Time
Finite Element (FE) Modeling

- **Intent**
 - Optimize vehicle design prior to testing
 - Evaluate vehicle safety outside testing scope

- **LSTC Hybrid III FE Models**
 - Developed 1990’s
 - Use in Automotive Simulation
 - Approximated Mat. Properties
 - Calibrated to for intended use
 - *Extensibility?*

- **Detailed HIII Model**
 - 451,768 Elements
 - Detailed joint definitions
 - Accurate Geometry
 - ~1.5 hour run time *(300ms pulse)*

- **Fast HIII Model**
 - 4,310 Elements
 - Simplistic joint definitions
 - Simplified geometry
 - ~26 hour run time *(300ms pulse)*
Hybrid III Extended Uses

Aerospace

Spaceflight

Military

Hybrid III ATD
Spaceflight’s Need for Occupant Protection

• New multipurpose crew vehicle (MPCV) Orion to be face of the National Space program

• Development of commercial space enterprises will see a dramatic increase in human space travel.
 • ISS Transport
 • Recreation
 • Asteroid mining
 • Colonization
Challenge of Spaceflight Occupant Protection

- Unique aspects of spaceflight
 - “Crash” every time – need low probability of injury
 - Spacesuits – blunt trauma, load path
 - Deconditioning – understand how it changes impact tolerance

- Variable Landing conditions

 Nominal
 - Planned
 - Low g impact
 - Directional control (+X)

 Off - Nominal
 - Weather, Chute failure, abort, etc.
 - Variable g impact
 - Multi-directional
 - (±X, ±Y, +Z)
Current approach to Spaceflight Occupant Protection

- **Physical Testing**
 - Vehicle Qualification
 - Defined Hybrid III IARV limits
 - Extremely Costly

- **FE-Modeling**
 - Efficient (Time and Money)
 - Versatility
 - Used early in design
 - Accuracy?

How accurate are current Hybrid III FE models in predicting the physical ATD under spaceflight loading conditions?
Testing Overview

- ATD sled test series
- Performed at WPAFB on HIA
- Auto & FAA Hybrid III
- Exercise ATD response
 - Directional
 - Rate Dependence
Testing Overview: Impacts

Frontal Impact

Spinal Impact

Rearward Impact
Testing Overview: Impacts

Lateral Impact: No Side Restraints

Shoulder & Leg Restraints

Full Lateral Restraint
Modeling Setup

- Rigid generic seat (mitigate model uncertainty)
- 5 point belt: as spaceflight design
- Limitations
 - Initial position
 - Unknown Arm restraints
 - Sensitivity showed minor effect
Modeling Overview: Initialization Checks

- Defined $F(t)$
- Belt Pretension
- 1G Preload

Pre-Load : 150 ms

- Belt Load
- Seat Contact
- Total Energy
- Kinetic Energy

Belt Tension: 20 lb

Ratio = 0.04

1g
ISO Curve Comparisons

Corridor

Magnitude

Phase

Slope

\[
\frac{(.4xS_c) + (.2xS_m) + (.2xS_p) + (.2xS_p)}{1}
\]

ISO Score (1/1)
Results: Test Repeatability

- Min. 1 Tests repeat per direction
- >.75 ISO threshold for analysis
- Limited kinematic responses removed

Rearward: .80

Frontal
- SPFZ: .69

Spinal
- SPFZ: .32

Lateral
- SPFZ: .73
Frontal Impact: Predicted Responses

- Accurately Predicted Frontal kinematics
 - Forward flexion

- Test --FE Detailed --FE FAST
Frontal Impact: Areas Concern

- FAST FE lumbar spine response
Frontal Impact: Rate Dependence

- Acceleration Rate (Peak / Rise Time) dependence
- Detailed FE: Head/Neck rotation response

-Test --FE Detailed --FE FAST

ISO score vs Acceleration Rate

\[R^2 = 0.9932 \]

\[R^2 = 0.6287 \]

10g - 110 ms

10g – 30 ms
Spinal Impact: Predicted Responses

- Accurately Predicts Off-axis kinematics
 - Forward flexion

-Test1--FE Detailed --FE FAST
-Test2
Spinal Impact: Areas of Concern

• On Axis Response
• Detailed FE
Spinal: Rate dependency

- Acceleration Rate (Peak / Rise Time) dependence
- Both FE: Pelvis Acceleration

Pelvis Response ISO score vs Acceleration Rate

- Test --FE Detailed --FE FAST
Rearward: Predicted Responses

- Test --FE Detailed --FE FAST

• Head & Pelvis

[Graphs showing acceleration over time for Head & Pelvis]
Rearward: Areas of Concern

- Chest & Neck
- Lateral: No Side Restraints
- Overall well correlated
- Head Y acceleration not picked up
Lateral: Shoulder & Leg Restraints

- Shape and Size prediction
- Head Y acceleration not picked up
- Head Y acceleration not picked up
- Pelvis: Detailed rate dependence
- Shape and Size prediction
Overall Conclusions

- **Directional dependence**
 - Consistent to field of design

- **Detailed vs. Fast**
 - Detailed though marginal

- **Belt driven motion**
 - Both models demonstrate accuracy

- **Seat driven motion**
 - Detailed model demonstrates incorrect rate effects

- **Questions?**
 - Simplified shape = improved rate dependence?
 - Shape + Material compensation?
Future Work

• Tease out model Inconsistencies
• Component evaluation
 • Rate Dependence
 • Geometry Effects
• Sensitivity Analysis
 • Identify positioning effects
 • Rate thresholds
• Expand use
 • Flexible Seat environment
 • Combined Loading
 • Full crew loads analysis
Thank You!