Investigation of the High-Energy Oxidation of FiberForm from DSMC Analysis of Molecular Beam Experiments

A. Borner, K. Swaminathan-Gopalani, K. A. Stephan, S. Poovathingal, V. J. Murray, T. K. Minton, F. Panerai, N. N. Mansour

*STC at NASA Ames Research Center, Moffett Field, CA 94035 – **University of Illinois at Urbana Champaign, Urbana, IL 61801 – **Montana State University, Bozeman, MT 59717 – ***AMA Inc. at NASA Ames Research Center, Moffett Field, CA 94035 – **NASA Ames Research Center, Moffett Field, CA 94035

Overview of the Effort

A collaborative effort between the University of Illinois at Urbana-Champaign (UIUC), NASA Ames Research Center (ARC) and Montana State University (MSU) succeeded at developing a new finite-rate carbon oxidation model [2] from molecular beam scattering experiments on vitreous carbon (VC) [1]. We now aim to use the direct simulation Monte Carlo (DSMC) code SPARTA to apply the model to each fiber of the porous fibrous Thermal Protection Systems (TPS) material FiberForm [F]. The detailed micro-structure of FF was obtained from X-ray micro-tomography and then used in DSMC. Both experiments and simulations show that the CO2 products ratio increased at all temperatures from VC to FF. We postulate this is due to the larger number of collisions: an O atom encounters inside the porous FF material compared to the flat surface of VC. For the simulations, we particularly focused on the lowest and highest temperatures studied experimentally, 1023 K and 1823 K, and found good agreement between the finite-rate DSMC simulations and experiments.

Molecular Beam Experiments

A hyperthermal O/O2 beam composed of approximately 90% O and 10% O2 is directed at a carbon sample at an incident angle of 45°. The number density as a function of arrival time at the detector, N(t), for the products exiting the surface was collected at various final angles that were in the plane of the beam and the surface normal. Angular flux distributions at each final angle can be obtained from the time-of-flight (TOF) distributions.

Finite-Rate Model from VC experiments [2]

The detailed TOF information of the scattered products was used to distinguish between the time scales of the various reaction mechanisms. In general, the Langmuir-Hinshelwood (LH) mechanism is a thermal surface mechanism consisting of 3 major steps: adsorption, formation, and desorption. Since the reaction takes place on the surface, the reactants must first adsorb on surface sites. The second step is the formation step, in which the reactants interact with carbon to form products on the surface. Finally, these products are desorbed as gas-phase species. The LH mechanisms employed in this model are further classified as 3 different types (herein referred to as LH(1-3)) and are distinguished based on the time scales of the CO/CO2 formation and desorption processes:

- LH1. Rapid formation and desorption (prompt mechanism)
- LH2. Slow formation with rapid desorption (formation limited)
- LH3. Rapid formation with slow desorption (desorption limited)

A total of 9 reactions were inferred from analysis of the experimental data: adsorption, desorption of O, LH3 formation and desorption of 2 types of C, and LH1 formation of O, CO and CO2. CO(a) is weakly bound and exits the surface quickly, while CO(b) is strongly bound to the surface and desorbs much more slowly.

References

Acknowledgements

This effort was performed under the Entry System Modeling Project (M. J. Wright, PMA) of the NASA Game Changing Development Program, and supported by NASA Grant NNX15SA92F.