Lightweight Integrated Solar Array and anTenna (LISA-T)

Les Johnson, John Carr & Darren Boyd
NASA
George C. Marshall Space Flight Center
LISA-T: The problem

- Small-sat surface area, internal volume, and mass are limited resources
- Most limited to 10’s of watts electrical power.

2-7W body mounted to 35W deployable

72W deployable

- … can we increase this to 100’s of watts?
LISA-T: The Solution

- Thin-film, large area, flexible assemblies: solar sail meet thin-film solar cell

- LISA (Lightweight Inflatable Solar Array) was born
LISA-T: The Solution Part 2

- Add the T (anTenna) by relocating the antenna(s) to deployed blanket

 - Spherical coverage
 - Electronically steered arrays
 - Higher gain design

- Reduced mass, volume, and surface area requirements

LISA-T emerges
LISA-T was inspired by the confluence of emerging technologies.

LISA-T is a launch stowed - orbit deployed small-satellite array with embedded lightweight power and communication devices.

- NanoSail-D Solar Sail
- Thin-film IMM PV
- Custom made axial mode helical antenna
• Rapidly advanced through to Technology Readiness Level 6
• Currently testing for environmental longevity
• Actively pursuing a flight demonstration
Providing High Power and Comm to small spacecraft

LISA-T is a launch stowed, orbit deployed structure on which lightweight flexible photovoltaic and antenna elements are embedded

Larger, Lighter, and Better Stowage to improve power generation and communications capabilities in small spacecraft
LISA-T: Omni, planar, and other configurations

- Omni for GN&C simplicity: Higher power @ similar stowage and mass rates
- Planar for high performance: Much higher power @ higher stowage and lower mass
LISA-T: Omni, planar, and other configurations

- Array web as well as deployment backbone can be reconfigured…
CubeSat solar array SOA:

- Rigid panel with triple-junction solar cells; cost tends to increase with larger, more complex arrays.

<table>
<thead>
<tr>
<th>Generation Axes</th>
<th>BOL Power (W)</th>
<th>Stowed Power (kW/m³)</th>
<th>Specific Power (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clyde Space 3U Body Mounted</td>
<td>2-axes</td>
<td>7.3</td>
<td>~33</td>
</tr>
<tr>
<td>MMA HaWK</td>
<td>1-axis</td>
<td>36</td>
<td>~99.0</td>
</tr>
<tr>
<td>Clyde Space 3U Deployable</td>
<td>1-axis</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Tether Unlimited SunMill</td>
<td>1-axis</td>
<td>80</td>
<td>~83</td>
</tr>
<tr>
<td>Pumpkin Turkey Tail</td>
<td>1-axis</td>
<td>56</td>
<td>~142</td>
</tr>
<tr>
<td>NASA iSAT (2016)</td>
<td>1-axis</td>
<td>72</td>
<td>~45</td>
</tr>
<tr>
<td>LISA-T pointed*</td>
<td>1-axis</td>
<td>>250</td>
<td>>400</td>
</tr>
<tr>
<td>LISA-T omnidirectional*</td>
<td>3-axes</td>
<td>>125</td>
<td>>125</td>
</tr>
</tbody>
</table>

*Note: The LISA-T calculations assume a high efficiency >25% thin film cell; lower cost cells can also be used to generate >100W in the pointed and >50W in the omnidirectional configuration.
CubeSat Antenna State of the Art

CubeSat antenna SOA:
Panel mounted structures

<table>
<thead>
<tr>
<th>Antenna Type</th>
<th>Band</th>
<th>Main Beam Gain</th>
<th>Type</th>
<th>Directionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISIS Deployable</td>
<td>UHF/VHF</td>
<td>0 dbi</td>
<td>Monopole/Dipole</td>
<td>Near omni</td>
</tr>
<tr>
<td>NanoCom ANT430</td>
<td>UHF</td>
<td>1.5 dbi</td>
<td>Turnstile monopoles</td>
<td>Near omni</td>
</tr>
<tr>
<td>Clyde Space S-Band</td>
<td>S-band</td>
<td>8 dbi</td>
<td>Patch</td>
<td>Pointed</td>
</tr>
<tr>
<td>SpaceQuest AC-2000</td>
<td>S-band</td>
<td>2 dbi</td>
<td>Turnstile</td>
<td>Pointed</td>
</tr>
</tbody>
</table>

LISA-T antenna targets:
Deployed structure integrated arrays

<table>
<thead>
<tr>
<th>Array Type</th>
<th>Band</th>
<th>Main Beam Gain</th>
<th>Type</th>
<th>Directionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitinol Dipole Array</td>
<td>UHF</td>
<td>1 dbi</td>
<td>Dipole</td>
<td>Spherical w/array</td>
</tr>
<tr>
<td>Nitinol Helical Array</td>
<td>S - X</td>
<td>10 dbi</td>
<td>Axial helical</td>
<td>Spherical w/array</td>
</tr>
<tr>
<td>Planar Spiral Array</td>
<td>S</td>
<td>4 dbi</td>
<td>Planar spiral</td>
<td>Spherical w/array</td>
</tr>
<tr>
<td>Patch Array</td>
<td>S - X</td>
<td>7 dbi</td>
<td>Patch</td>
<td>Spherical w/array</td>
</tr>
</tbody>
</table>
LISA-T: Omni, planar, and other configurations

Omnidirectional

- Bread plate
- Stowed petal stack
- Stowed central deployment
- 1U CubeSat
- Top hat

Planar

- Bread plate
- Stowed petal stack
- Petal
- 1U CubeSat
- Mast boom
- Top hat
- Cross brace
LISA-T: Convertible Configurations

Omni

Planar

Planar deployment progression
LISA-T Cartridge: System Concept

- Payload package in ≤2.4U; everything for LISA-T

 1. Single LISA-T configuration

 2. All unique, supporting hardware for demo:
 - Array regulation and power management.
 - Communication management
 - Supporting Avionics