Suit Engineering & Modeling

RICHARD RHODES – SPACESUIT ENGINEER
ADVANCED SPACESUIT DEVELOPMENT TEAM
Engineering Goal: Enable crew to perform EVA required tasks with the least amount of energy expenditure
- If no specific tasks are identified, maximize mobility with a goal of achieving unsuited performance

Mobility is a combination of:
- Range of motion
- Work or joint torque throughout that range of motion
- Natural movement (programming)

Mobility is also heavily impacted by fit
- Fit is usually evaluated by how well the suit’s mobility joints line up with the crew’s joints throughout the required tasks
Testing Limitations

- Development budgets usually do not allow multiple sizes of suits
 - Consistent subject fit and performance can be a challenge when evaluating suit architectures
 - Iterations of joint design are expensive and slow
 - Poor concept or just poor implementation

- Modeling suit fit and mobility offers a way of evaluating fit, range of motion, and natural movement of mobility architectures without building a fleet of suits
 - Models need to be validated, but can help guide development

- Examples of modeling efforts
 - Fit for Z-2 development
Past Sizing Method

- Historical Sizing method (Mark III & EMU)
 - Identify population to fit
 - Identify locations on the suit that correspond to the critical anthropometric dimensions
 - Validate measurements by building a mockup structure and fit checking crew population

- Results:
 - 2D measurements offer little guidance on sizing of population
 - Fit checking crew population ensures current astronauts will fit, but is not very predictive of future sizes
Recent Modeling Based Sizing

- **Z-2 Sizing Method**
 - Identify population to fit
 - Obtain boundary manikins/scans to represent population
 - Conduct fit checks of manikins from entire population set in various positions
 - 3D print HUT structure and validate model results with subject fit checks

- **Results:**
 - Offers better evaluation of 3D body shapes
 - Once validated, can easily fit check entire population size ranges
 - By evaluating multiple arm positions, we can evaluate good joint placement and sizes
Future Needs

- **Fit – Custom or Fleet Sizing**
 - Modeling analysis to produce a predicted optimal fit for custom sizing
 - Modeling analysis to produce the best sizing across a fleet of suits and the number of suits
 - Combined with mobility analysis to predict mobility when not in optimal fit

- **Mobility**
 - Analysis of current mobility architecture to understand what aspects of the mobility architecture or joints could be improved to offer most natural movement or most efficient interaction with crew
 - Joint angle and position
 - Joint sizing and subject indexing
 - Bearing torque