ARMD Transformative Aeronautics Concepts Program

CONVERGENT AERONAUTICS SOLUTIONS PROJECT

Spanwise Adaptive Wing

Matthew Moholt
NASA AFRC

Dr. Othmane Benafan
NASA GRC

September 19-20, 2017
Enabling Reconfigurable Aircraft
Through The **Spanwise Adaptive Wing (SAW)** Concept

- Increasing aircraft efficiency by reducing the rudder through the incorporation of SAW
- Articulating the outboard portions of the wing via Shape Memory actuation
- Lateral-directional stability and control augmentation
- Supersonic - Increased compression lift and reduced wave drag
 - Enabler for supersonic flying wing design
SAW Development Path

Flight test

Ground test

CAS Objective: to develop all of the sub-systems for full scale infusion
- Technology and tool development and validation
- Scale-up validation
- A plan for the next a larger demonstration in a more relevant environment
Reconfigurable Aircraft

F-111 Mission Adaptable Wing

Historical Perspective

Morphing Aircraft

Folding wing aircraft

XB-70 Valkyrie

Adaptive Compliant Trailing Edge

Flexsys Flex Foil™
Ground Folding
A New Way to Actuate

• Shape Memory Alloy (SMA)
 – NiTiHf
 ➢ Alloys that have a “memory.” These materials have the ability to remember and recover their original shapes with load or temperature.
 ➢ SMAs exhibit a solid-to-solid, reversible phase transformation
 ➢ Can be **ALL-Electric** driven
Current State-of-the-Art **Rotary Actuators**

SMA Actuator
Model # CAS2016

- Size ~450 in3
- Weight ~58.5 lbs
- Temperatures~ tunable based on alloy used
- Torque ~ 100,000 in-lbs
- Angle ~ 90 deg

Non-traditional – Revolutionary – Transformative

Assessment of Current Technology- With ARMD Thrusts in Mind

Current Technologies (hydraulic, pneumatic, or magnetic motors) do not provide a step-change towards “Big Leaps” in efficiency & environmental performance

- Heavy, and bulky – other options include gear boxes – large systems
- With SMA technology: **20%** the weight & **15%** the size of comparable hydraulic system
Flight testing out of the box ideas

PTERA

Prototype-Technology Evaluation and Research Aircraft

• Roughly based on an 11%-scale 737
• Baseline configuration has an 11.3ft span, 12ft length, and 4.3ft height
• ~200lb gross takeoff weight (40lb payload)
• Powered by two JetCat P200 turbojet engines (50 lbs thrust each)
• Flown 13 times (SysID, performance evals)
Flight Test Experiment

Trade space evaluation

Aero analysis

Hinge Loads

Actuator Loads

Actuator Design

Baseline Values

Design Space Explored

Wing and Joint Design

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Sweep Angle (°)</th>
<th>Wing tip Span (0,°)</th>
<th>C.G. shift (aff of root % chord)</th>
<th>Wing tip Yaw Control (% of rudder @ 10.0° deflection)</th>
<th>Structural Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0°</td>
<td>12.0 in</td>
<td>1.0 in</td>
<td>10.4</td>
<td>8.8</td>
</tr>
<tr>
<td>2</td>
<td>0.0°</td>
<td>15.0 in</td>
<td>1.0 in</td>
<td>12.4</td>
<td>10.7</td>
</tr>
<tr>
<td>3</td>
<td>0.0°</td>
<td>18.0 in</td>
<td>1.0 in</td>
<td>14.4</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>10.0°</td>
<td>12.0 in</td>
<td>3.0 in</td>
<td>20.4</td>
<td>11.7</td>
</tr>
<tr>
<td>5</td>
<td>10.0°</td>
<td>15.0 in</td>
<td>3.0 in</td>
<td>25.9</td>
<td>16.0</td>
</tr>
<tr>
<td>6</td>
<td>10.0°</td>
<td>18.0 in</td>
<td>3.0 in</td>
<td>31.7</td>
<td>20.6</td>
</tr>
<tr>
<td>7</td>
<td>20.0°</td>
<td>12.0 in</td>
<td>5.4 in</td>
<td>29.6</td>
<td>14.8</td>
</tr>
<tr>
<td>8</td>
<td>20.0°</td>
<td>15.0 in</td>
<td>5.4 in</td>
<td>38.5</td>
<td>21.5</td>
</tr>
<tr>
<td>9</td>
<td>20.0°</td>
<td>18.0 in</td>
<td>5.4 in</td>
<td>48.1</td>
<td>29.1</td>
</tr>
<tr>
<td>10</td>
<td>30.0°</td>
<td>12.0 in</td>
<td>8.0 in</td>
<td>38.3</td>
<td>17.3</td>
</tr>
<tr>
<td>11</td>
<td>30.0°</td>
<td>15.0 in</td>
<td>8.0 in</td>
<td>50.6</td>
<td>27.3</td>
</tr>
<tr>
<td>12</td>
<td>30.0°</td>
<td>18.0 in</td>
<td>8.0 in</td>
<td>64.2</td>
<td>38.1</td>
</tr>
</tbody>
</table>

For the PTERA demonstration SAW produces nearly 40% of total rudder authority. Can this be used to reduce rudder size?
Flight Test

- Two flight campaigns on Edwards Air Force Base dry lakebed
- First flight late October/Early November 2017
WORKING TOWARD FULL SCALE
NiTiHf Alloy Processed in Large Scale

- **60lbs of NiTi-20Hf material were melted**
 - Melting process scalable from 1 lbs to >100 lbs
 - Repeatable properties (for lab verification, actuator back ups, and future flights.

- **Extrusion to rod and tubing**
 - From 4” to 0.5” in diameter and from 1.2” to 0.5” in diameter reduction

- **Tubes drilled and splined**
 - Final form of actuator before training and instrumentation.
Ground Test: Large tube testing underway

- 1” tube
- 10” long
- 20,000 in-lbf test rig
- Fully instrumented for SMA large tube testing
3 Mechanisms for Ground Test

- Use 0.5” and 1” tubes
- Target for 90 degrees of rotation
- 5000 in-lbf torque
- Explore locking features
F-18 Demonstration?

Figure 1: View of the analyzed SAW F-18 geometry (-70 deg wing deflection)

Figure 2: Percentage changes in lift coefficient for different wing deflections, from Cart3D
Fin