Medical Data Architecture
Capabilities and Design

C. Middour1, M. Krihak2, A. Lindsey3, N. Marker4, S. Wolfe3, S. Winther5, K. Ronzano5, D. Bolles3, W. Toscano3, and T. Shaw3

1Millennium Engineering and Integration Co, NASA Ames Research Center, Moffett Field, CA
2Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA
3NASA Ames Research Center, Moffett Field, CA
4SGT Inc., NASA Ames Research Center, Moffett Field, CA
5Wyle Laboratories, NASA Ames Research Center, Moffett Field, CA

2017 NASA Human Research Program Investigators’ Workshop

24 January 2017
Overview

- Project Background
- Objectives/Challenges
- System Overview
- Integrated Devices
- Current Status/Next Steps
Project Background

ExMC Element Risk
Risk of Adverse Health Outcomes & Decrement in Performance due to Inflight Medical Conditions

MDA Need
ExMC Gap Med07: We do not have the capability to comprehensively process medical-relevant information to support medical operations during exploration missions.

MDA Goal
The MDA project will develop capabilities that support autonomous data collection, and necessary functionality and challenges in executing a self-contained medical system that approaches crew health care delivery without assistance from ground support.
MDA Project Objectives

• Develop a system to comprehensively manage and process medically-relevant information to support medical operations during exploration missions

• Build a series of test beds that incrementally add capability

• The system will provide the data architecture foundation to:
 – Facilitate autonomous data collection
 – Promote seamless communication with medical and non-medical devices
 – Accommodate data streams in varying formats
 – Provide data management capability for medical operations
Challenges

• Implement NASA Space Flight Human-System Standard NASA-STD-3001
 – Level of Care V: “A high level of potential risk exists that personnel may experience medical problems on orbit at some time during the mission.”
 – Increasing levels of autonomous care

• Limited Resources
 – Medical knowledge and skills (Integrated data/knowledge management)
 – Supplies and equipment
 – No resupply

• Autonomous Crew Medical Operations
 – Delayed communications
 – No ability for medical evacuation

• Accommodate future technologies
Test Bed 1 Overview

Test Bed 1 Objectives

- Demonstrate data flow autonomy
- Establish data architecture foundation
- Develop a scalable data management system
- Utilize modular design and standardized interfaces

Collect Data
- Astroskin
- Cardiax
- Dose tracker
- CMO data input

Store Data
- Database population
- Medical history
- Biosensors’ measurements
- Medication consumption

Provide Information
- Display patient medical record
- Display vital signs

Demo
MDA Test Bed 1 Functional Block Diagram

- Modular design
 - Layers allow for organization of code and components
 - Biosensor device adapters are modular
- Subsystems separated by interfaces
 - Drop-in replacements of systems in later versions (upgrades, etc)
Software Layers

• **User Equipment Layer**
 - Standard web browser (Laptop/Tablet) - Complete
 - ECG monitor (CARDIAx) - Complete
 - Wearable biosensor vest for vital signs (Astroskin) - Complete
 - iPad application currently onboard ISS (Dose Tracker) - Future Work

• **User Interface Layer**
 - Electronic Medical Records (OpenEMR) - In Progress
 - Search and display of biosensor data - In Progress

• **Analytical Layer**
 - Data reduction: reduce streams of heart beat events to a single number - In Progress
Software Layers

- **Storage Layer**
 - Data API - Complete
 - Stores/retrieves biosensor data
 - Backed by relational and time series databases (MySQL, OpenTSDB, HBASE)

- **Data Sources Layer**
 - Software supporting
 - CARDIAX - In Progress
 - Astroskin - Complete
 - Dose Tracker - 1.1 Release
 - Crew Data Importer - In Progress

- **Infrastructure Layer**
 - Server(s) - Complete

- **Discovery and Analytics Layer**
 - No components in Test Bed 1
System Overview

• Integrates biomedical devices with medical records system
 – “Vitals” and ECG data are automatically populated into EMR

• Software deployment options for development, laboratory and analog testing
 – Hardware (stand-alone servers, “cloud” systems, laptops)
 – Operating System (UNIX, Mac, Windows)

• Automated software build
 – Pre-configures with a standard load of patient data
 – Reduces manual data entry

• Uses open-source components

• NASA Class C software and process
Medical Records System

- Lightly modified open source Electronic Medical Records system “OpenEMR”
 - Integration with biosensor data for auto-populating and plotting data
 - Remove links to insurance billing

Screen captures of patient data entry demonstration

Ultrasound of lumbar spine
Devices

Astroskin
- Wearable garment-based monitoring system
- Sensors: Accelerometers, 3-lead ECG, respiration, \(\text{SpO}_2 \), Systolic Blood pressure, skin temperature

CARDIAAX
- Wireless, 12-Lead ECG
- ECG Glove: Built-In lead wires attached to pre-positioned electrodes

Dose Tracker
- Collects ISS crewmember medication
 - Usage, dosage, frequency
 - Side effects
Current Status

• Passed gate reviews
 – System Requirements Review (SRR)
 – Preliminary Design Review (PDR) / Critical Design Review (CDR)
 – From the final PDR/CDR board report:
 • “As detailed in the 'Review Success Criteria Assessment’ section of this report, the project has met, as ‘successful’, all ToR-defined review success criteria.”
 • “ExMC MDA continues to employ a robust incremental phased approach to the Test Beds 1-4, and has documented its technical architecture and allocation of requirements, developed in conjunction with customer’s requirements.”
 – Currently in implementation phase
Test Bed 1 in the Lab

ExMC staff execute demonstration at ARC

ExMC staff execute demonstration at ARC
Next Steps

• Scoping potential “Test Bed 1.5” (not baselined)
 – Operate in cooperation with habitat evaluations
 • Integrate exercise device(s)
 • Provide biosensor “telemetry” to spacecraft simulators
• Test Bed 1 Demo – April 2017
• Test Bed 1.0 Release – June 2017
 – Patch Release 1.1 – August 2017 (with Dose Tracker)
• Test Bed 2.0 Scope Completion – July 2017
• Test Bed 2.0 SRR – August 2017