Meteorite Falls and the Fragmentation of Meteorites

Daniel Momeni
Westmont High School, Campbell, CA 95008

In order to understand the fragmentation of objects entering the atmosphere and why some produce more fragments than others, I have searched the Meteoritical Society database for meteorites >20 kg that fell in the USA, China, and India. I also studied the video and film records of 21 fireballs that produced meteorites. A spreadsheet was prepared that noted smell, fireball, explosion, whistling, rumbling, the number of fragments, light, and impact sounds. Falls with large numbers of fragments were examined to look for common traits. These were:

- The Norton County aubrite, explosion and a flare >100 fragments
- The Forest City H5 chondrite explosion, a flare, a dust trail 505 specimens.
- The Richardton H5 chondrite explosion and light 71 specimens.
- The Juancheng H5 chondrite explosion, a rumbling, a flare, a dust trail 1000 specimens.
- The Tagish Lake C2 chondrite explosion, flare, dust trail 500 specimens.

I conclude that fragmentation is governed by the following: (1) Bigger meteors undergo more stress which results in more specimens; (2) Harder meteorites also require more force to break them up which will cause greater fragmentation; (3) Force and pressure are directly proportional during falls. General observations made were: (1) Meteorites produce fireballs sooner due to high friction; (2) Meteors tend to explode as well because of high stress; (3) Softer meteorites tend to cause dust trails; (4) Some falls produce light as they fall at high velocity.

I am grateful to NASA Ames for this opportunity and Derek Sears, Katie Bryson, and Dan Ostrowski for discussions.
Meteorite Falls and The Fragmentation of Meteorites

Daniel Momeni, Westmont High School, Campbell, CA 95008.

Goals

Fragmentation: To understand why some meteors create more fragments than others.

Meteorite Falls: To find a clear understanding as to what happens when a meteorite falls through the sky.

Method

- The Meteoritical Society database was searched for observed meteorite falls in the US, China, and India where >20 kg were recovered. (Total = 42)
- Fall descriptions were analyzed and cataloged in a spreadsheet for the following terms:
 - Smell, fireball, explosion, whistling, rumbling, number of fragments, light, impact sounds,
- Twenty-one fireballs for which video/film records exist were analyzed.
- Falls with large numbers of fragments were examined to look for common traits.

Analysis and Conclusions

Fragmentation:
- Bigger meteors undergo more stress which results in more specimens
- Harder meteorites also require more force to break them up which will cause greater fragmentation
- Force and pressure are directly proportional during falls

What Happens As a Meteorite Falls Across The Sky?:
- Meteorites produce fireballs sooner due to high friction
- Meteors tend to explode as well because of high stress
- Softer meteorites tend to cause dust trails
- Some falls produce light as they fall at high velocity

Results

- Norton County (Aubrite) – Explosion, Flare (100+ Spec.)
- Forest City (H5) – Explosion, Flare, Dust Trail (505 Spec.)
- Richardton (H5) – Explosion, Light (71 Spec.)
- Juancheng (H5) – Explosion, Rumbling, Flare, Dust Trail (1000 Spec.)
- Tagish Lake (C2) - Explosion, Flare, Dust Trail (500 Spec.)

References

The Meteoritical Society (lpi.usra.edu)

Acknowledgements

Thanks to NASA Ames for this opportunity and Derek Sears, Katie Bryson, and Dan Ostrowski for discussions.