Advanced Software V&V for Civil Aviation and Autonomy

Dr. Guillaume Brat

NASA Ames Research Center
Motivation for V&V research

The Decadal Survey for Civil Aeronautics and the NextGen Integrated WorkPlan both call for more research on the validation and verification of complex systems.

- Software costs are very high
- V&V cost is 40-50% of the SW cost
- Driven by certification requirements

Example of typical cost in Aviation:

- Non-Software: 30%
- Software Development: 20%
- Software V&V: 50%
Reasons for the high cost of S/W

~80-90% of faults introduced here

~96% of faults found here

Phase in which error was detected and corrected
Areas addressed by NASA tools

- FRET
- CoCoSim
- VeriCA
- Model Conformance
- IKOS
- SeaHorn
- FramaC
- RLES
- MARGInS

Dependability/Safety Cases
Support for reducing cost of late-lifecycle changes

- Requirements Engineering
- System Design
- Software Architectural Design
- Component Software Design
- Code Development
- Unit Test
- Integration Test
- System Test
- Acceptance Test
Current V&V Tools and Capabilities

Requirements
- Requires theorem prover expertise
- Algorithmic proofs using theorem proving
 - PVS

Design
- Combination of formal method with control theory experts
 - Simulink, C, Stateflow
 - Model checking for checking/guaranteeing safety requirements

Code
- Accessible to moderate/expert programmer
 - C limited C++
 - Static code analysis for run-time errors and safety requirements

Testing
- Requires proficiency in statistics
- Blackbox
 - Statistical-based testing to learn unsafe boundaries of operation

Operation
Future V&V Tools and Capabilities

Accessible to engineers
Accessible to engineers
Accessible to programmer
Requires proficiency in statistics

English-like
SCADE
MatLab
Full C++
Floating-point analysis
blackbox

Requirement capture and analysis
Checking/guaranteeing safety requirements on design models
Static code analysis for run-time errors
Statistical-based testing to learn unsafe boundaries of operation

Requirements
Design
Code
Testing
Operation

EXPERTISE
TARGET
CAPABILITY
FAA/Regulator Needs

- **Current Standards**
 - Software Development Lifecycle (RTCA DO-178C / DO-278B)
 - Assumes the requirements are correct and complete

- **Needs for revised process**
 - Update standards
 - Framework for new process
 - Identify/develop new process
 - Training material

- **NASA engagement**
 - Train certifiers
 - Employ new certification process
 - Safety Cases Assurance Cases

- **Update standards and processes to allow for use of formal V&V methods**
- **Educate certifiers so that results from new V&V techniques can be understood and accepted**
Assurance Cases

- An assurance case is
 - A set of assurance claims connected to a body of evidence through a structured argument, to provide a comprehensive, defensible and valid justification that a system meets its assurance requirements for a given application in a defined operating environment.

 - A means for integrating safety and mission assurance (S&MA) information.
Assurance Cases

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Compliance

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation

Advice

Stakeholder views
Assurance Cases and Lifecycle

Applies to system lifecycle processes, from “cradle to grave”

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation
Advice
Stakeholder views
Assurance Cases and Lifecycle

Updated dynamically as environment/system evolves (e.g., with maintenance)

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Compliance

Tracking

Evolution

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation
Advice
Stakeholder views
Assurance Cases and Autonomy

- **Plan**
- **Build**
- **Operate**
- **Retire**

Concept and Design Assurance

- **Analysis**
 - **Formal methods / tools**
 - Assurance properties, Safety policies, requirements, …
 - **Verification evidence**

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Learn & Adapt
- **Maintain**
Assurance Cases and Autonomy

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Safety Architecture
- Bow-tie model
- Escalation factors

Operational / Run-time Assurance

Plan → Build → Operate → Retire

Learn & Adapt

Maintain

Operational / Run-time Assurance

Run-time Monitoring
- Safety performance
- Hazard precursors

Risk / Confidence Assessment
- Risk quantification
- Monitor generation

Operational risk management
Assurance Cases and Autonomy

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Safety Architecture
- Bow-tie model
- Escalation factors

Run-time Monitoring
- Safety performance
- Hazard precursors

Risk / Confidence Assessment
- Barrier update
- Risk update

Operational / Run-time Assurance

Plan → Build → Operate → Retire

Learn & Adapt

Maintain

Real-time update

Data driven update

Updates from operations
Conclusions

• **Goal**: Address the impact of V&V of overall cost of S/W for aviation
• **Solution**: Bring V&V earlier in the lifecycle by using formal methods
• **Status**: Prototype tools for all phases
 – Requirement tool is in its infancy

• **Innovation**: gather V&V evidences in assurance cases that extend throughout the lifecycle
• **Future**: Address V&V of autonomy through the use of assurance cases at runtime