Advanced Software V&V for Civil Aviation and Autonomy

Dr. Guillaume Brat

NASA Ames Research Center
Motivation for V&V research

The Decadal Survey for Civil Aeronautics and the NextGen Integrated Work Plan both call for more research on the validation and verification of complex systems.

Example of typical cost in Aviation

- Software costs are very high
- V&V cost is 40-50% of the SW cost
- Driven by certification requirements
Reasons for the high cost of S/W

~80-90% of faults introduced here

~96% of faults found here

Phase in which error was detected and corrected
Areas addressed by NASA tools

Dependability/Safety Cases
Support for reducing cost of late-lifecycle changes

FRET

CoCoSim
VeriCA
Model Conformance

IKOS
SeaHorn
FramaC

RLES

MARGInS

IKOS
SeaHorn
FramaC

RLES

MARGInS

Requirements
Engineering

System
Design

Software
Architectural
Design

Component
Software
Design

Code
Development

Unit
Test

Integration
Test

System
Test

Acceptance
Test

PVS Models & Analysis for Algorithms
Current V&V Tools and Capabilities

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Design</th>
<th>Code</th>
<th>Testing</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires theorem prover expertise</td>
<td>Combination of formal method with control theory experts</td>
<td>Accessible to moderate/expert programmer</td>
<td>Requires proficiency in statistics</td>
<td></td>
</tr>
<tr>
<td>PVS</td>
<td>Simulink, C, Stateflow</td>
<td>C limited C++</td>
<td>blackbox</td>
<td></td>
</tr>
<tr>
<td>Algorithmic proofs using theorem proving</td>
<td>Model checking for checking/guaranteeing safety requirements</td>
<td>Static code analysis for run-time errors and safety requirements</td>
<td>Statistical-based testing to learn unsafe boundaries of operation</td>
<td></td>
</tr>
</tbody>
</table>

EXPERTISE
TARGET
CAPABILITY
Future V&V Tools and Capabilities

Accessible to engineers

Accessible to engineers

Accessible to programmer

Requires proficiency in statistics

English-like

SCADE
MatLab

Full C++
Floating-point
analysis

blackbox

Requirement capture and analysis

Checking/guaranteeing safety requirements on design models

Static code analysis for run-time errors

Statistical-based testing to learn unsafe boundaries of operation

Requirements

Design

Code

Testing

Operation

EXPERTISE

TARGET

CAPABILITY
FAA/Regulator Needs

Software Development Lifecycle (RTCA DO-178C / DO-278B)
Assumes the requirements are correct and complete

Update standards
Framework for new process
Identify/develop new process
Train certifiers

Employ new certification process

Update standards and processes to allow for use of formal V&V methods
Educate certifiers so that results from new V&V techniques can be understood and accepted

Safety Cases Assurance Cases
Assurance Cases

- An assurance case is
 - A set of assurance claims connected to a body of evidence through a structured argument, to provide a comprehensive, defensible and valid justification that a system meets its assurance requirements for a given application in a defined operating environment.

- A means for integrating safety and mission assurance (S&MA) information.
Assurance Cases

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation
Advice
Stakeholder views
Assurance Cases and Lifecycle

Applies to system lifecycle processes, from “cradle to grave”

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation

Advice

Stakeholder views
Assurance Cases and Lifecycle

Updated dynamically as environment/system evolves (e.g., with maintenance)

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation
Advice
Stakeholder views

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Evolution

Compliance

Tracking
Assurance Cases and Autonomy

Plan → Build → Operate → Retire

Learn & Adapt

Maintain

Analysis

Formal methods / tools

Assurance properties, Safety policies, requirements, …

Verification evidence

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Concept and Design Assurance
Assurance Cases and Autonomy

Assurance Case
• Structured database of assurance assets with tracing relations and semantics

Safety Architecture
• Bow-tie model
• Escalation factors

Run-time Monitoring
• Safety performance
• Hazard precursors

Risk / Confidence Assessment
Monitor generation
Risk quantification
Operational risk management

Operational / Run-time Assurance
Assurance Cases and Autonomy

Plan → Build → Operate → Retire

Learn & Adapt
Maintain

Run-time Monitoring
- Safety performance
- Hazard precursors

Risk / Confidence Assessment
- Barrier update
- Risk update

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Safety Architecture
- Bow-tie model
- Escalation factors

Operational / Run-time Assurance
Conclusions

• **Goal:** Address the impact of V&V of overall cost of S/W for aviation

• **Solution:** Bring V&V earlier in the lifecycle by using formal methods

• **Status:** Prototype tools for all phases
 – Requirement tool is in its infancy

• **Innovation:** gather V&V evidences in assurance cases that extend throughout the lifecycle

• **Future:** Address V&V of autonomy through the use of assurance cases at runtime