Advanced Software V&V for Civil Aviation and Autonomy

Dr. Guillaume Brat

NASA Ames Research Center
Motivation for V&V research

The Decadal Survey for Civil Aeronautics and the NextGen Integrated WorkPlan both call for more research on the validation and verification of complex systems.

- Software costs are very high
- V&V cost is 40-50% of the SW cost
- Driven by certification requirements

Example of typical cost in Aviation
Reasons for the high cost of S/W

~80-90% of faults introduced here
~96% of faults found here

Phase in which error was detected and corrected

Relative cost to fix error
Areas addressed by NASA tools

Dependability/Safety Cases
Support for reducing cost of late-lifecycle changes

- Requirements Engineering
- System Design
- Software Architectural Design
- Component Software Design
- Code Development
- Acceptance Test
- System Test
- Integration Test
- Unit Test

Tools:
- FRET
- CoCoSim
- VeriCA
- Model Conformance
- IKOS
- SeaHorn
- FramaC
- RLES
- MARGInS
Current V&V Tools and Capabilities

- Requires theorem prover expertise
- Combination of formal method with control theory experts
- Accessible to moderate/expert programmer
- Requires proficiency in statistics

- PVS
- Simulink, C, Stateflow
- C limited C++
- blackbox

- Algorithmic proofs using theorem proving
- Model checking for checking/guaranteeing safety requirements
- Static code analysis for run-time errors and safety requirements
- Statistical-based testing to learn unsafe boundaries of operation

Requirements → Design → Code → Testing → Operation
Future V&V Tools and Capabilities

Accessible to engineers

Accessible to engineers

Accessible to programmer

Requires proficiency in statistics

English-like

SCADE MatLab

Full C++ Floating-point analysis

blackbox

Requirement capture and analysis

Checking/guaranteeing safety requirements on design models

Static code analysis for run-time errors

Statistical-based testing to learn unsafe boundaries of operation

Requirements Design Code Testing Operation
FAA/Regulator Needs

Current Standards

- Update standards
- Framework for new process
- Identify/develop new process
- Train certifiers

Software Development Lifecycle (RTCA DO-178C / DO-278B)
Assumes the requirements are correct and complete

Needs for revised process

- Update standards
- Training material
- Educate certifiers so that results from new V&V techniques can be understood and accepted

Employ new certification process

NASA engagement

- Update standards and processes to allow for use of formal V&V methods

Safety Cases Assurance Cases
Assurance Cases

• An assurance case is
 – A set of assurance claims connected to a body of evidence through a structured argument, to provide a comprehensive, defensible and valid justification that a system meets its assurance requirements for a given application in a defined operating environment.

 Assurance Case
 • Structured database of assurance assets with tracing relations and semantics

 – A means for integrating safety and mission assurance (S&MA) information.
Assurance Cases

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation
Advice
Stakeholder views

Compliance
Assurance Cases and Lifecycle

Applies to system lifecycle processes, from “cradle to grave”

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation

Advice

Stakeholder views

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance
Assurance Cases and Lifecycle

Updated dynamically as environment/system evolves (e.g., with maintenance)

Standards
• DO-178, APRs, STDs
• Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
• V&V artifacts
• Safety artifacts
• Design rationale
• Engineering artifacts
• Domain knowledge
• Engineering processes

Tool Capabilities

Assurance Case
• Structured database of assurance assets with tracing relations and semantics

Evolution

Compliance

Tracking

System Attributes
• Safety, Security
• Dependability
 o Reliability
 o Availability, ...
• Performance

Assurance Dashboard
• Metrics
• Status/Progress
• Visual analytics
• Confidence assessment

Report generation
Advice
Stakeholder views
Assurance Cases and Autonomy

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Analysis
- Formal methods / tools
- Assurance properties, Safety policies, requirements, …
- Verification evidence

Learn & Adapt
- Maintain
- Operate
- Build
- Plan

Concept and Design Assurance
Assurance Cases and Autonomy

- **Assurance Case**
 - Structured database of assurance assets with tracing relations and semantics

- **Safety Architecture**
 - Bow-tie model
 - Escalation factors

- **Run-time Monitoring**
 - Safety performance
 - Hazard precursors

- **Risk / Confidence Assessment**
 - Monitor generation
 - Risk quantification

- **Operational risk management**

- **Operational / Run-time Assurance**
Assurance Cases and Autonomy

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Run-time Monitoring
- Safety performance
- Hazard precursors

Risk / Confidence Assessment
- Barrier update
- Risk update

Safety Architecture
- Bow-tie model
- Escalation factors

Real-time update

Data driven update

Updates from operations
Conclusions

• **Goal**: Address the impact of V&V of overall cost of S/W for aviation

• **Solution**: Bring V&V earlier in the lifecycle by using formal methods

• **Status**: Prototype tools for all phases
 – Requirement tool is in its infancy

• **Innovation**: gather V&V evidences in assurance cases that extend throughout the lifecycle

• **Future**: Address V&V of autonomy through the use of assurance cases at runtime