Advanced Software V&V for Civil Aviation and Autonomy

Dr. Guillaume Brat

NASA Ames Research Center
Motivation for V&V research

The Decadal Survey for Civil Aeronautics and the NextGen Integrated Workplan both call for more research on the validation and verification of complex systems.

- Software costs are very high
- V&V cost is 40-50% of the SW cost
- Driven by certification requirements

Example of typical cost in Aviation:

- Non Software 30%
- Software Development 20%
- Software V&V 50%
Reasons for the high cost of S/W

~80-90% of faults introduced here

~96% of faults found here
Areas addressed by NASA tools

Dependability/Safety Cases
Support for reducing cost of late-lifecycle changes

- Requirements Engineering
- System Design
- Software Architectural Design
- Component Software Design
- Code Development
- CoCoSim
- SeaHorn
- FramaC
- RLES
- IKOS
- VeriCA
- FRET
- MARGInS
- Integration Test
- System Test
- Acceptance Test
- Unit Test
Current V&V Tools and Capabilities

- Requires theorem prover expertise
- Combination of formal method with control theory experts
- Accessible to moderate/expert programmer
- Requires proficiency in statistics

- PVS
- Simulink, C, Stateflow
- C limited C++
- blackbox

- Algorithmic proofs using theorem proving
- Model checking for checking/guaranteeing safety requirements
- Static code analysis for run-time errors and safety requirements
- Statistical-based testing to learn unsafe boundaries of operation

Requirements → Design → Code → Testing → Operation
Future V&V Tools and Capabilities

Accessibility:
- Accessible to engineers
- Accessible to programmers
- Requires proficiency in statistics

Expertise:
- English-like
- SCADE MatLab
- Full C++ Floating-point analysis
- Blackbox

Requirements:
- Requirement capture and analysis
- Checking/guaranteeing safety requirements on design models
- Static code analysis for run-time errors
- Statistical-based testing to learn unsafe boundaries of operation

Phases:
- Requirements
- Design
- Code
- Testing
- Operation
FAA/Regulator Needs

Software Development Lifecycle (RTCA DO-178C / DO-278B)
Assumes the requirements are correct and complete

Current Standards

- Update standards
- Framework for new process
- Identify/develop new process
- Train certifiers

Needs for revised process

- Update standards and processes to allow for use of formal V&V methods
- Educate certifiers so that results from new V&V techniques can be understood and accepted

Employ new certification process

Safety Cases Assurance Cases

NASA engagement
Assurance Cases

• An assurance case is
 – A set of assurance claims connected to a body of evidence through a structured argument, to provide a comprehensive, defensible and valid justification that a system meets its assurance requirements for a given application in a defined operating environment.

 – A means for integrating safety and mission assurance (S&MA) information.
Assurance Cases

- **Standards**
 - DO-178, APRs, STDs
 - Guides, Handbooks, ...

- **Domain Model (Reusable Mission Concepts)**

- **Assurance Assets**
 - V&V artifacts
 - Safety artifacts
 - Design rationale
 - Engineering artifacts
 - Domain knowledge
 - Engineering processes

- **Tool Capabilities**

- **Assurance Case**
 - Structured database of assurance assets with tracing relations and semantics

- **System Attributes**
 - Safety, Security
 - Dependability
 - Reliability
 - Availability, ...
 - Performance

- **Assurance Dashboard**
 - Metrics
 - Status/Progress
 - Visual analytics
 - Confidence assessment

- **Report generation**

- **Advice**

- **Stakeholder views**
Assurance Cases and Lifecycle

Apply to system lifecycle processes, from “cradle to grave”

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation
Advice
Stakeholder views
Assurance Cases and Lifecycle

Updated dynamically as environment/system evolves (e.g., with maintenance)

Standards
- DO-178, APRs, STDs
- Guides, Handbooks, ...

Domain Model (Reusable Mission Concepts)

Assurance Assets
- V&V artifacts
- Safety artifacts
- Design rationale
- Engineering artifacts
- Domain knowledge
- Engineering processes

Tool Capabilities

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

System Attributes
- Safety, Security
- Dependability
 - Reliability
 - Availability, ...
- Performance

Assurance Dashboard
- Metrics
- Status/Progress
- Visual analytics
- Confidence assessment

Report generation

Advice

Stakeholder views
Assurance Cases and Autonomy

Plan → Build → Operate → Retire

Analysis

Formal methods / tools

Assurance properties, Safety policies, requirements, …

Verification evidence

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Learn & Adapt

Maintain

Concept and Design Assurance
Assurance Cases and Autonomy

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Safety Architecture
- Bow-tie model
- Escalation factors

Run-time Monitoring
- Safety performance
- Hazard precursors

Risk / Confidence Assessment
- Monitor generation
- Risk quantification

Operational risk management

Operational / Run-time Assurance
Assurance Cases and Autonomy

Assurance Case
- Structured database of assurance assets with tracing relations and semantics

Run-time Monitoring
- Safety performance
- Hazard precursors

Risk / Confidence Assessment
- Barrier update
- Risk update

Safety Architecture
- Bow-tie model
- Escalation factors

Updates from operations

Operational / Run-time Assurance
Conclusions

- **Goal:** Address the impact of V&V of overall cost of S/W for aviation
- **Solution:** Bring V&V earlier in the lifecycle by using formal methods
- **Status:** Prototype tools for all phases
 - Requirement tool is in its infancy

- **Innovation:** gather V&V evidences in assurance cases that extend throughout the lifecycle
- **Future:** Address V&V of autonomy through the use of assurance cases at runtime