Mars2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) Do No Harm Test Series

IPPW 14
June 12 - 16th, 2017

Greg Swanson – AMA Incorporated @ NASA ARC
Jose Santos – Sierra Lobo @ NASA ARC
Todd White – NASA ARC
Walt Bruce, Chris Kuhl, Henry Wright – NASA LaRC
MEDLI2 complements and extends the measurements of MEDLI on the Mars Science Laboratory (MSL) with additional heatshield observation locations, inclusion of supersonic aerodynamics, and backshell aerothermal and pressure observations.

6 MEDLI2 Instrumented Sensor Plug (MISP)
- 5 Plugs: 1 TC
- 1 Plug: 2 TCs

3 Heat Flux Sensors
- 2 Total
- 1 Radiative

11 MISP
- 3 Plugs: 3 TCs
- 8 Plugs: 1 TC

Mars Entry Atmospheric Data System (MEADS)
- One Base Pressure Transducer (PT)
- 1 PT for Hypersonic
- 6 PTs for Supersonic

Mars2020 is a MSL Build-to-Print Aeroshell
Accommodation of MEDLI2 sensors requires modifications to the Mars 2020 TPS

- **DNH testing ensured:**
 - TPS Performance degradation due to the sensor integration is minimized (or prevented)
 - TPS Performance changes (if any) are characterized
 - TPS failures are prevented

- **MEDLI2 DNH Testing included:**
 - Environmental testing (vibe, shock, t/vac) of the DNH panels
 - Bounding aerothermal (arc jet) testing of the DNH panels
 - Associated pre- and post-test inspections & associated analysis

- **MEDLI2 DNH Testing covered only new backshell instrumentation (SLA-561V)**
 - MEDLI2 relied on earlier MEDLI/MSL testing as the basis of heatshield (PICA) DNH efforts
 - MEDLI2 will perform arc jet and environmental testing for the heatshield components later in the project life cycle as part of the normal flight lot TPS accommodation certification
 - MEDLI2 DNH Testing does not include the environmental testing of the backshell mounted pressure transducer – this will be performed separately
DNH Test Panel Design

- Four 12" x 12" SLA-561V Panel with Substructure
- Installed additional Thermocouples (TCs) at the bondline and backface after environmental testing for arc jet testing
- The four pressure port holes were located in specific proximities to the SLA-561V flexcore to examine the effect of the flexcore on the port hole (if any)
- The MEADS port plug was a mitigation concept if any issues were seen with port hole proximity to the flexcore

All pressure ports are blind holes in the TPS, no active pressure measurements are present
MEDLI2’s Overall DNH Approach

- Build / procure flight-like backshell instrumentation
- Have Lockheed Martin develop and demonstrate backshell sensor integration on four flight-like TPS/substructure panels
- Expose the integrated panels to Mars 2020 qualification level environments (loads and durations)
- Expose the environmentally tested panels to worst-case simulated aeroheating in an arc jet
- Inspect and document the panels between each of the above tests
- One of four panels used as a control for the environmental testing
Random Vibration Test Specifications

The acceleration spectral density (ASD) test levels for random vibration testing are taken from the Mars2020 Environmental Requirements Document and are detailed in “Qualification/Protoflight level” column below.

Vibrational Loads are derived from the expected Atlas V launch environment

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Flight Acceptance Level</th>
<th>Qualification/Protoflight Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-40</td>
<td>+ 6 dB/oct</td>
<td>+ 6 dB/oct</td>
</tr>
<tr>
<td>40-500</td>
<td>0.2 g2/Hz</td>
<td>0.4 g2/Hz</td>
</tr>
<tr>
<td>500-2000</td>
<td>- 6 dB/oct</td>
<td>- 6 dB/oct</td>
</tr>
<tr>
<td>Overall</td>
<td>13.0 grms</td>
<td>18.4 grms</td>
</tr>
</tbody>
</table>

Overall Limits
- Target: 18.4 grms
- +1dB: 23 grms
- -1dB: 14.65 grms

- Test in all 3-axes, two minutes per axis
- The ASD shall be within ±3 dB over the 20-2000 Hz
- Overall spectrum level shall be within ±1 dB of the specified rms level
Random Vibration Test Setup

Z-Axis Setup

X-, Y-Axis Setup
Shock Test Specifications

Shock loads are derived from the expected load of the ballast mass jettison event since many of the sensors are in close proximity.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>40 g</td>
</tr>
<tr>
<td>100 - 1600</td>
<td>+10 dB/oct</td>
</tr>
<tr>
<td>1600 – 10000</td>
<td>4000 g</td>
</tr>
</tbody>
</table>

- Tolerance bands of +/- 6 dB to 3000 Hz, and +9/-6 dB above 3000 Hz
- At least 50% of the maximum spectrum values shall exceed the nominal
- Shock pulse should decay to less than 10% of its peak value within 20ms
- All 3-axes (x, y, and z) must be shocked, two shock per axis

June 15, 2017
Shock Test Setup

Mounted Test Article
Air Cannon
Suspended Shock Plate
High Speed Camera

3-Axes w/ One Shock Event
Thermal Vacuum Test Specifications

Thermal loads are derived from the expected backshell worst case environments during the cruise phase

<table>
<thead>
<tr>
<th>Condition No.</th>
<th>Phase</th>
<th>Target Temperature (°C)</th>
<th>Pressure (torr)</th>
<th>Dwell Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check up</td>
<td>$T_{room} +5 \degree C / -0 \degree C$</td>
<td>Ambient</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Worst hot</td>
<td>+77 +/- 2 °C</td>
<td><10^{-5} Torr</td>
<td>180</td>
</tr>
<tr>
<td>3</td>
<td>Worst cold</td>
<td>-140 +/- 2 °C</td>
<td><10^{-5} Torr</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>Worst hot</td>
<td>+77 +/- 2 °C</td>
<td><10^{-5} Torr</td>
<td>180</td>
</tr>
<tr>
<td>5</td>
<td>Worst cold</td>
<td>-140 +/- 2 °C</td>
<td><10^{-5} Torr</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>Worst hot</td>
<td>+77 +/- 2 °C</td>
<td><10^{-5} Torr</td>
<td>180</td>
</tr>
<tr>
<td>7</td>
<td>Worst cold</td>
<td>-140 +/- 2 °C</td>
<td><10^{-5} Torr</td>
<td>180</td>
</tr>
<tr>
<td>8</td>
<td>Check up</td>
<td>$T_{room} +5 \degree C / -0 \degree C$</td>
<td><10^{-5} Torr</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Back fill</td>
<td>$T_{room} +5 \degree C / -0 \degree C$</td>
<td>Ambient</td>
<td>-</td>
</tr>
</tbody>
</table>

- Test to be performed as specified in the table above
- Temperature ramp rate must be less than or equal to 5°C per minute when transitioning between test conditions
- Dwell time does not begin until all conditions are correct
Thermal Vacuum Test Setup

Test Articles (3)
Top Hot/Cold Plate
Bottom Hot/Cold Plate
PTF 150 Arc Jet Test

- DNH PTF arc jet test was performed Sept 2016 after completion of all the environmental testing
- **Arc Jet Test Objectives:**
 1. Demonstrate that the presence of the pressure ports through the TPS do not result in unacceptable degradation of the surrounding TPS.
 2. Demonstrate that the presence of the pressure ports through the TPS do not result in TPS to backshell structure bond line exceeding maximum allowable temperatures
 3. Demonstrate that the presence of the MISPs in the TPS do not result in unacceptable degradation of the surrounding TPS.
 4. Demonstrate that the presence of the MISPs in the TPS do not result in the TPS to backshell structure bondline exceeding their specified maximum allowable temperatures
 5. Demonstrate that the presence of the heat flux sensors in the backshell TPS do not result in unacceptable degradation of the surrounding TPS.
 6. Demonstrate that the presence of the heat flux sensors in the backshell TPS do not result in the TPS to backshell structure bondline exceeding their specified maximum allowable temperatures
Arc Jet Test Matrix

<table>
<thead>
<tr>
<th>Run, Panel</th>
<th>Environmental Test</th>
<th>Target Arc Jet Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shock</td>
<td>Vibe</td>
</tr>
<tr>
<td>Run 1 Panel 2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Run 2 Panel 3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Run 3 Panel 1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Run 4 Panel 4</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

- Two calibration runs (180 & 181) on August 30-31.
- Model runs were performed on September 6-8.

Cold Soak Performed Immediately Prior to Arc Jet Test providing Thermal Shock
MEDLI2 met targeted aerothermal test conditions (heatflux, heatload, pressure & shear) in the Ames Panel Test Facility (PTF)

- Inspection and analysis of test articles confirmed that MISP, pressure ports, and Heat Flux sensors did not cause degradation of the surrounding TPS
 - Laser scans show surface features at the sensor locations are all much less than 0.050”
 - All IML and bondline temperatures stayed below 150°C

- No observable difference between panels (Panels 1-3) and the control (Panel 4)
Do No Harm Test Data Products

Test: Vibe
Shock

T/VAC
Arc Jet

<table>
<thead>
<tr>
<th>Overall</th>
<th>ASD Profile</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84 grms</td>
<td>1.5 dB</td>
<td>2 mins</td>
</tr>
<tr>
<td>Panel 1, Z-axis</td>
<td>0.84 grms</td>
<td>2 mins</td>
</tr>
<tr>
<td>Panel 2, Z-axis</td>
<td>0.84 grms</td>
<td>2 mins</td>
</tr>
<tr>
<td>Panel 3, Z-axis</td>
<td>0.84 grms</td>
<td>2 mins</td>
</tr>
<tr>
<td>Panel 1, X-axis</td>
<td>15.4 grms</td>
<td>Within Limits</td>
</tr>
<tr>
<td>Panel 1, Y-axis</td>
<td>15.4 grms</td>
<td>Within Limits</td>
</tr>
<tr>
<td>Panel 2, X-axis</td>
<td>15.4 grms</td>
<td>Within Limits</td>
</tr>
<tr>
<td>Panel 2, Y-axis</td>
<td>15.4 grms</td>
<td>Within Limits</td>
</tr>
<tr>
<td>Panel 3, X-axis</td>
<td>15.4 grms</td>
<td>Within Limits</td>
</tr>
<tr>
<td>Panel 3, Y-axis</td>
<td>15.4 grms</td>
<td>Within Limits</td>
</tr>
</tbody>
</table>

Shock Above Min, % Over Nominal, 10% Decay Time

Panel 1, Shock 1: Yes, No, No, 100%, 17%, 63%, 21 ms, 15 ms, 15 ms
Panel 1, Shock 2: Yes, Yes, Yes, 63%, 89%, 100%, 17 ms, 18 ms, 18 ms
Panel 1, Shock 3: Yes, Yes, Yes, 63%, 100%, 98%, 15 ms, 17 ms, 18 ms
Panel 2, Shock 4: Yes, Yes, Yes, 61%, 87%, 76%, 19 ms, 18 ms, 17 ms
Panel 2, Shock 5: Yes, Yes, Yes, 75%, 85%, 74%, 19 ms, 24 ms, 18 ms
Panel 3, Shock 6: Yes, Yes, Yes, 61%, 89%, 91%, 18 ms, 20 ms, 19 ms
Panel 3, Shock 7: Yes, Yes, Yes, 63%, 96%, 89%, 17 ms, 17 ms, 16 ms

June 15, 2017
IPPW 14
DNH Test Summary and Lessons Learned

Test Series Summary

- MEDLI2 project built and procured flight-like instrumentation
 - Ames built MISP, and Heat Flux sensors were procured from outside vendor
- Lockheed Martin developed and exercised integration procedures on four test panels
- MEDLI2 successfully tested 3 of 4 panels in environmental tests (vibe, shock, t/vac)
 - New mechanical shock test approach was used to efficiently test all 3-axes with one shock event
- All 4 models successfully underwent arc jet testing
 - Two panels were thermally shock using a LN$_2$ bath prior to arc jet testing
- Overall panel and instrument Do No Harm performance was excellent
 - Pressure transducer port holes appear to be unaffected by proximity to SLA-561V cell walls
 - Laser scans show surface features at the sensor locations are all much less than 0.050”
 - All IML and bondline temperatures stayed below 150°C
- In addition to Do No Harm, science data was collected from sensors allowing investigation past Do No Harm requirements
MEDLI vs. MEDLI2 Science Payload

MEDLI on MSL (2012)
- **Heatshield**
 - 7 Pressure Transducers
 - Hypersonic
- **7 Instrumented Plugs**
 - 4 TCs
 - 1 Isotherm Sensor
- **Sensor Support Electronics Box**

MEDLI2 on Mars2020
- **Backshell**
- **Heatshield**
- **1 Pressure Transducer**
 - Base Pressure
- **6 Instrumented Plugs**
 - 1 Plugs has 2 TCs
 - 5 Plugs have 1 TC
- **3 Heat Flux Sensors**
 - 2 Total & 1 Radiative
- **Sensor Support Electronics Box**
- **7 Pressure Transducers**
 - 6 Supersonic
 - 1 Hypersonic
- **11 Instrumented Plugs**
 - 3 Plugs have 3 TCs
 - 8 Plugs have 1 TC