Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Jan Quets, Gabriëlle De Lannoy, Rolf Reichle, Michael Cosh, Robin Van der Schalie, Jean-Pierre Wigneron
Problem statement

unique Tb observation → unique SM retrieval
Problem statement

unique Tb observation → unique SM retrieval

Because:

- choice in RTM parameterization (e.g. SMAP L2, LMEB L2, ECMWF, SMAP L4)
- choice in inversion algorithms:
 - regular (i.e. non-mpdi-based) or mpdi-based algorithm
 - species included in cost function (CF): H-pol, V-pol, which angle(s), how many angles?
 - whether to include prior soil moisture information in the CF
Problem statement

unique Tb observation → unique SM retrieval

Because:

- choice in RTM parameterization (e.g. SMAP L2, LMEB L2, ECMWF, SMAP L4)
- choice in inversion algorithms:
 - regular (i.e. non-mpdi-based) or mpdi-based algorithm
 - species included in cost function (CF): H-pol, V-pol, which angle(s), how many angles?
 - whether to include prior soil moisture information in the CF

→ note: uncertainty = systemic error + random error
 - random error may be focus (e.g. in data assimilation studies)
Methods: site information

11 EASEv2 grid cells containing SMAP core validation sites
Methods: site information

11 EASEv2 grid cells containing SMAP core validation sites

→ in situ soil moisture observations to which SM retrievals will be compared (May 2010→June 2015)
Methods: ensemble sets

- 4 choices in RTM parameterization
 - Lit1: based on SMAP L2
 - h: 0.11 → 0.16; ω: 0.05 → 0.07; b_h & b_v: 0.1 → 0.11
 - Lit2: based on LMEB L2
 - h: 0.10 → 0.70; ω: 0.05 → 0.05; b_h & b_v: 0.15 → 0.3
 - Lit3: based on ECMWF
 - h: 1.66 → 1.66; ω: 0.00 → 0.05; b_h & b_v: 0.15 → 0.3
 - Lit4: based on SMAP L4
 - h: 0.00 → 0.97; ω: 0.00 → 0.13; b_h & b_v: 0.07 → 0.4
- 4 perturbations for each h_{min}, h_{max}, ω, and b_h, b_v (-50%, -25%, +25%, +50%)
- 7 angles in CF (i.e. 30°, 35°, 40°, 45°, 50°, 55°, 60°), either separately or together
- 2 polarizations (i.e. H-pol, V-pol)
- 2 different RTM-inversion algorithms (i.e. mpdi-based or non-mpdi-based)
Methods: ensemble sets

- 4 choices in RTM parameterization
 - Lit1: based on SMAP L2 $h: 0.11 \rightarrow 0.16; \omega: 0.05 \rightarrow 0.07; b_h & b_v: 0.1 \rightarrow 0.11$
 - Lit2: based on LMEB L2 $h: 0.10 \rightarrow 0.70; \omega: 0.05 \rightarrow 0.05; b_h & b_v: 0.15 \rightarrow 0.3$
 - Lit3: based on ECMWF $h: 1.66 \rightarrow 1.66; \omega: 0.00 \rightarrow 0.05; b_h & b_v: 0.15 \rightarrow 0.3$
 - Lit4: based on SMAP L4 $h: 0.00 \rightarrow 0.97; \omega: 0.00 \rightarrow 0.13; b_h & b_v: 0.07 \rightarrow 0.4$
- 4 perturbations for each $h_{\text{min}}, h_{\text{max}}, \omega,$ and b_h, b_v (-50%, -25%, +25%, +50%)
- 7 angles in CF (i.e. 30°, 35°, 40°, 45°, 50°, 55°, 60°), either separately or together
- 2 polarizations (i.e. H-pol, V-pol)
- 2 different RTM-inversion algorithms (i.e. mpdi-based or non-mpdi-based)
- Many ensemble sets tested, ranging between 28 and 2456 members
- Not all combinations possible
Methods: Cost Function (CF)

\[CF = (T_b_{sim} - T_b_{obs})^T C^{-1} (T_b_{sim} - T_b_{obs}) + \frac{1}{0.02^2} (S_{retr} - S_{CLSM})^2 \]

with \(C = \) Tb error covariance matrix, representing:
- Tb error variances \((6^2 K^2)\)
- correlations between Tb errors of different incidence angles

with prior SM information included
- model-only \(S_{CLSM} \)
Results: retrieval uncertainty

Part 1: sensitivity analysis

default retrieval:
- single species in CF: 40° Hpol
- Lit4 RTM parameterization
- non-mpdi-based inversion algorithm
- =basically SCA
Results: retrieval uncertainty

Part 1: sensitivity analysis

default retrieval:
 • single species in CF: 40° Hpol
 • Lit4 RTM parameterization
 • non-mpdi-based inversion algorithm
 • =basically SCA

HOW?
 • **step1**: choosing angle, polarization, RTM-parameters, inversion algorithms separately
 • **step2**: calculating ensemble variances of these experiments
 • **step3**: dividing this variance in long-term mean ensemble variance and short-term ensemble variance
Results: retrieval uncertainty

Part 1: sensitivity analysis

default retrieval:
- single species in CF: 40° Hpol
- Lit4 RTM parameterization
- non-mpdi-based inversion algorithm
- =basically SCA

angle choice:

![Graph showing E(short-term ens var) vs. angle, polarization, parmaps, inv. algorithm.](image)

![Chart showing retrieved soil moisture at Forth Cobb with different incidence angles.](image)
Results: retrieval uncertainty

Part 1: sensitivity analysis

default retrieval:
- single species in CF: 40° Hpol
- Lit4 RTM parameterization
- non-mpdi-based inversion algorithm
- = basically SCA

polarization choice:
Results: retrieval uncertainty

Part 1: sensitivity analysis

default retrieval:
• single species in CF: 40° Hpol
• Lit4 RTM parameterization
• non-mpdi-based inversion algorithm
• =basically SCA

RTM parameterization choice:

\[
E(\text{short-term ens var}) \ [m^3/m^3]^2
\]
Results: retrieval uncertainty

Part 1: sensitivity analysis

default retrieval:
- single species in CF: 40° Hpol
- Lit4 RTM parameterization
- non-mpdi-based inversion algorithm
 = basically SCA

inversion algorithm choice:

![Graph showing soil moisture retrieval over time](image)

- $E_{\text{short-term ens var}}$ [m3/m3]2
- angle
- polarization
- parmaps
- inv. algorithm

$E_{\text{short-term ens var}} = 0.00005$ to 0.0001

KU LEUVEN

J. Quets et al. (KULeuven) Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals SMW2017, Vienna
Results: retrieval uncertainty

Part 2: total uncertainty estimation
Results: retrieval uncertainty

Part 2: total uncertainty estimation
→ (1) find a properly verified ensemble set
Results: retrieval uncertainty

Part 2: total uncertainty estimation

→ (1) find a properly verified ensemble set
→ (2) its ensemble variance characterizes total retrieval uncertainty
Results: retrieval uncertainty

Part 2: total uncertainty estimation

(1) find a properly verified ensemble set

ensemble set: all H&V species in CF, no CLSM constraint

Talagrand diagram

\[\sigma(\text{ens set}) = \frac{\text{MSE}(\text{ens mean}, \text{obs})}{9.6} \]
Results: retrieval uncertainty

Part 2: total uncertainty estimation

→ (1) find a properly verified ensemble set

ensemble verification

Talagrand diagram

\[\frac{\sigma(\text{ens set})}{\text{MSE}(\text{ens mean, obs})} \]

9.6

ensemble set: all H species in CF, no CLSM constraint

ensemble set: all H&V species in CF, no CLSM constraint

J. Quets et al. (KULeuven) Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals SMW2017, Vienna
Results: retrieval uncertainty

Part 2: total uncertainty estimation

→ (1) find a properly verified ensemble set

ensemble verification

\[
\sigma(\text{ens set}) \quad \text{MSE(ens mean, obs)}
\]

\[
\begin{align*}
\sigma(\text{ens set}) & = 9.6 \\
\text{MSE(ens mean, obs)} & = 5.4
\end{align*}
\]

ensemble set: all H&V species in CF, no CLSM constraint

ensemble set: all H species in CF, no CLSM constraint
Results: retrieval uncertainty

Part 2: total uncertainty estimation

→ (1) find a properly verified ensemble set

ensemble set: all H&V species in CF, no CLSM constraint

ensemble set: all H species in CF, no CLSM constraint

ensemble set: all H&V species in CF, no CLSM constraint, centered
Results: retrieval uncertainty

Part 2: total uncertainty estimation

→ (1) find a properly verified ensemble set

ensemble set: all H&V species in CF, no CLSM constraint

ensemble set: all H species in CF, no CLSM constraint

ensemble set: all H&V species in CF, no CLSM constraint, centered

\[
\sigma(\text{ens set}) = \frac{\text{MSE}(\text{ens mean, obs})}{9.6}
\]

J. Quets et al. (KULeuven) Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals SMW2017, Vienna
Results: retrieval uncertainty

Part 2: total uncertainty estimation

→ (1) find a properly verified ensemble set

→ (2) its ensemble variance characterizes total retrieval uncertainty

ensemble set: all H&V species in CF, no CLSM constraint, centered

time-averaged ensemble variance of verified ensemble set = 78% of variance of in situ observations
Results: ranked skills of ensemble retrievals

Ranked Skills (n=2856)

ubRMSE

bias

R

anomaly R

inversion algorithm/
polarization

RTM-parameterization

angle

with/without prior

J. Quets et al. (KULeuven) Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals SMW2017, Vienna
Results: skills of ensemble means

Skill metrics of ensemble means VS ensemble sets

no CLSM constraint in CF

ubRMSE:

bias:

R:

R-anomaly:

CLSM constraint in CF

ubRMSE:

bias:

R:

R-anomaly:

Ensemble set:
Results: skills of ensemble means

→ inclusion of CLSM sm in the CF generally improves every skill
Results: skills of ensemble means

Inclusion of CLSM sm in the CF generally improves every skill, especially when including all species in the CF.
Results: skills of ensemble means

inclusion of CLSM sm in the CF generally improves every skill especially when including all species in the CF
Results: skills of ensemble means

The inclusion of CLSM sm in the CF generally improves every skill independent of the used RTM parameterization.
Take home messages

1. **passive L-band SMOS soil moisture retrievals are uncertain**
 - ... and most sensitive to RTM parameterizations (e.g. roughness parameters and surface albedo)
 - ... with the ensemble variance of a verified set amounting to **78%** of in situ temporal variance
 - ... choice of RTM-parameter set strongly influences the bias

2. **constraining a CF with CLSM-simulated soil moisture improves the retrieval skill**
 - even though CLSM skills are generally worse than retrieval skills
 - main reason: constrain extreme high and low values

3. **ensemble means of ensemble sets**
 - ensemble means of ensemble sets outperform operational SMOS by about up to **9%** for ubRMSE and more than **6%** for anomaly R
 - best performance reached by including as many as possible species in the CF (i.e. 14 species)

4. next: compare to SMOS-IC or other alternatives
Thank you for your attention!