Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

Dr. Salvatore Mandrà
What is fair sampling?

Definition (fair sampling):
- The ability of an algorithm to find all solutions of a degenerate problem with equal probability when run in repetition mode.

Why is it important?
- In some contexts (SAT-Filter, #SAT, machine learning, …) finding a good variety of solutions is more important than finding a single solution quickly.

Optimize benchmarking:
- Standard test: Find the ground-state energy fast and reliably.
- Stringent test: Find all minimizing configurations equiprobably.
Previous studies on transverse field QA [1]

Transverse field QA is biased ...

\[H_D = - \sum_i S_i^x \]

Previous studies on transverse field QA [1]

Non-stoquastic H_D mitigates the problem!

The D-Wave 2X quantum annealer

- Unavoidable noise
- Non-zero temperature

\[H_D = - \sum_i \hat{\sigma}_i^x \]

Superconducting qubit chip

~1000 working qubits
Experimental analysis using DW2X device [1]

- Random couplings from **Sidon set** ($J_{ij} = \pm 5, \pm 6, \pm 7$ on Chimera of $c \times c$ unit cells)
- Limit the study to instances with **well controlled degeneracy** ($\# gs = 3 \cdot 2^k$)
- No **trivial** degeneracy
- 100 gauges x {10k, 100k} readouts
- $T_{\text{ann}} = 5\mu, 20\mu, 200\mu$

DW2X is exponentially biased!

Classical algorithms sample more homogeneously

Experimental analysis using DW2X device [1]

Could the bias be a consequence of the intrinsic noise of the DW2x?

No.
The bias is unchanged by rescaling the energy

- Energy of the target problem rescaled by a factor ε
- Intrinsic noise rescaled by a factor $1/\varepsilon$

Adding **extra noise does not change** the bias.

Classical algorithms are marginally affected by the noise

The bias persists up to the 20th excited state!

Different of the sampling respect to the flat distribution (larger is worse)

Implications & Future directions

The bias can limit the use of QA for sampling

- Applications like SAT-Filter and machine learning may not be suitable for QA without mitigating the sampling problem

How to mitigate the sampling problem?

- Explore different driver Hamiltonians (e.g. non-stoquastic)

How to understand the bias problem better?

- Theoretical understanding of the role of the driver Hamiltonian in sampling
- Theoretical exploration of the implication of many-body localization
Thanks for the attention!

Zheng Zhu
Texas A&M

Helmut G. Katzgraber
Texas A&M

NASA QuAIL

IARPA

Quantum Enhanced Optimization
Experimental analysis using DW2X device [1]

Adiabatic Quantum Optimization (AQO)

\[H = (1 - s)H_d + sH_p \]

Initial "driver" Hamiltonian

Target Problem
Adiabatic Quantum Optimization (AQO)

\[
H = (1 - s)H_d + sH_p
\]
Adiabatic Quantum Optimization (AQO)

\[H = (1 - s)H_d + sH_p \]
Adiabatic Quantum Optimization (AQO)

\[H = (1 - s)H_d + sH_p \]

\[T \sim \frac{1}{g^2} \]
Adiabatic Quantum Optimization (AQO)

\[H = (1 - s)H_d + sH_p \]