An EPIC Tale of the Quiescent Particle Background

S.L. Snowden & K.D. Kuntz

Mostly K. D. Kuntz
Extended Source Analysis Software
Use Based Empirical Investigation

- Builds quiescent particle background (QPB) spectra and images for observations of extended sources that fill (or mostly fill) the FOV – i.e., annular background subtraction won’t work
- Uses a combination of Filter Wheel Closed (FWC) and corner data to capture the spectral, spatial, and temporal variation of the quiescent particle background

New Work:
- Improved understanding of the QPB (aided by adding a whole lot of data since 2008)
- Significantly improved statistics (did I mention a LOT more data?)
- Better characterization and identification of anomalous states
- Builds backgrounds for some anomalous state
- New efficient method for non-anomalous states
Where all of these quantities are spectra…
…and typical values are \(\sim 5 \times 10^{-13} \) /pixel/energy bin/s
Current Method

However, the corner data from an individual observation have very poor statistics!

So, we:

• Build a database of corner data from all observations
• Characterize the shape of each spectrum
 • The (2.5-5.0 keV)/(0.4-0.8 keV) hardness ratio sufficient
• Then for any given observation
 • Measure hardness ratio (red dot)
 • Can sum all spectra with similar spectral shape (points between green lines)
• This “augmented” corner spectrum has significantly better S/N!
Current Method

Where all of these spectra are created on chip-by-chip basis

\[
\text{background} = \frac{\text{FWC FOV}}{\text{FWC corner}} \quad \frac{\text{augmented corner}}{\text{poor stats}}
\]

Now really good stats
Why so Complicated?

Why not just one background spectrum?
Spectra are composed of lines and continuum
- Lines are sensitive to residual gain variation so should be fit in the observed spectrum rather than subtracted (not ESAS)
- The continuum is characterized by total count rate \((R)\) and the \((2.5-5.0 \text{ keV})/(0.4-0.8 \text{ keV})\) hardness ratio \((H)\)
The QPB Varies

Filter-wheel closed (FWC) “continuum” data shows some spatial variation in count-rate and significant variation in hardness ratio (MOS1 & MOS2)

Hardness ratio (H) for the MOS1, MOS2, and pn (H-meanH)
The QPB Varies

Corner data show:

- Long-term temporal variation due to solar cycle
- Temporal variation in hardness ratio
 - Anomalous states in chips 1-4, 1-5, 2-2, & 2-5
 - As of 2008, apparently also in non-anomalous chips
The QPB Varies (as of 2008)

Corner data show:

• Long-term temporal variation (due to solar cycle)
• Temporal variation in hardness ratio
• Anomalous states in chips 1-4, 1-5, 2-2, & 2-5
• Apparently also in non-anomalous chips
 • e.g., distribution of measured hardness ratio
 • was broader than expected
 • from Poisson statistics after
 • anomalous states had been
 • Removed
• Spoiler: Our understanding of this last point has changed!
Anomalous States

- Some chips show an intermittent low-energy “noise” feature
- Typically seen as:
 - higher than usual count rate
 - lower than usual hardness ratio
- States identifiable in plots of hardness ratio vs. count rate
So What’s New?

Start With:
Perennial ESAS Tasks

To keep ESAS up to date, periodically
• Update FWC data (no longer a Goddard responsibility)
• Update databases of corner spectra
• Reprocess as SAS defaults/procedures change
 • Check for significant changes in behavior
 • Update anomalous state definitions

Original methods described in Kuntz & Snowden (2008)
• Irregular updates every several years
• Finishing up(?) last(?) significant change (2017)
Perennial ESAS Tasks

Compare 2008 and with 2017 for corner data sets

<table>
<thead>
<tr>
<th>Instrument</th>
<th>2008</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS1</td>
<td>42.2 Ms</td>
<td>303.1 Ms</td>
</tr>
<tr>
<td>MOS2</td>
<td>44.4 Ms</td>
<td>303.8 Ms</td>
</tr>
<tr>
<td>pn</td>
<td>-----</td>
<td>36.2 Ms</td>
</tr>
<tr>
<td>Observations</td>
<td>~2200</td>
<td>~12230</td>
</tr>
</tbody>
</table>

- Significant increase in statistics! Due to
 - Increase in number of public observations
 - Change in construction of MOS corner data sets

In 2008 flare removal done before extracting corners. However - corner masks block soft proton flares. Only filter out periods of high background in corners (typically entry to/exit from particle belts)
With More Statistics - Changes

- With greater number of observations
- Come greater number of extreme states observed
- Even for chips w/o anomalous states
- Had proposed ‘pseudo-anomalous’ label
- However, no clear “noise” feature
- Statistics may not be sufficient for good background
With More Statistics - Changes

• Prompted to revisit issue of distribution of hardness ratio for chips with no anomalous states
• Find that the distribution is consistent with a single mean spectrum and counting statistics for most chips
• Non-anomalous states of 1-4, 1-5, 2-2, 2-5 not so clear

A success story – non-anomalous MOS1 CCD #3
With More Statistics - Changes

- For most chips a single mean corner spectrum is sufficient
- Observations with extremely low hardness ratios may not be well modeled with a mean spectrum but
- Most (non-anomalous) observations with very low hardness ratios are short - so a problem anyway

![Graph showing observed and simulated distributions](image)
With More Statistics - Changes

• This is a significant change from ESAS V1, only possible
 • With the greater statistics
 • Better definitions, identification and removal of anomalous states

• However the method used in ESAS V1 still applicable to observations/chips in anomalous states but…
 • Do we know enough about the anomalous states?
 • Maybe
 • Do we have sufficient statistics to implement?
 • Maybe
Comparison of hardness ratio/rate diagrams and mean spectra as a function of hardness ratio show no clear boundary between anomalous and non-anomalous states.
Anomalous States

The distribution of the hardness ratio H is consistent with a mean non-anomalous spectrum given Poisson statistics... but the distribution of H is \textit{not} consistent with a single mean anomalous spectrum
Anomalous State Questions

- At a given value of H are some observations in anomalous states while others are not?
 - Seemingly not
- What governs the strength of the noise feature in the anomalous states?

- Do anomalous states evolve?
 - Have not seen anomalous states in chips other than the four identified in K&S 2008
 - Possible evolution for a single chip?

Change in mean H with time?
Anomalous States

- Structures in the noise features do not change significantly with hardness ratio.
- Thus may be able to construct backgrounds for anomalous states *where there are sufficient data.*
So What About the pn?
pn Issues

- Given the longer read time of the pn, OOT events a more significant problem
- Corner data will be strongly contaminated by the spectrum within the FOV
 - Thus corner data can be strongly contaminated by soft proton flares
- Therefore need to do flare cleaning before corner extraction
 - Flare removal a very hands-on process
 - Prospect of handling 12000 observations daunting
Flare Fitting Issues

- For region of interest, form light-curve in 2.5-8.5 keV
- Create histogram of values in light-curve
- Fit Gaussian to peak
- Remove time steps with values $>3\sigma$ from mean
- For strong flaring - fit may fail in a number of ways
Flare Fitting Issues

- Using a training set of ~2000 observations where the fits were evaluated by hand
- Built a new fitting algorithm and residual measures to allow completely automated evaluation of the goodness of fit.
- Of 10216 observations only 3773 had good flare filtering.
pn Issues

• To test goodness of flare filtering for corner data created mean corner spectrum for each FOV filter
• Here,
 • corner ≡ corner data - scaled corner data from randomized data
• If flare filtering good, expect all spectra to be the same, but that was not the result
pn Issues

- Source of variation with filter:
 - Is it due to real problems with flare removal?
 - Is it due to problem with scaling and removing OOT?
pn Issues

• Source of problem unresolved – however
• Sort the spectra by hardness ratio and remove all that are more than 3σ different from spectra with same hardness resolves issue (slight over-simplification)
• Only 1966 observations remain
pn Issues

- Consider the distribution of the hardness ratio of the remaining corner spectra (done quadrant-by-quadrant) -
- The distributions are consistent with a mean spectrum and counting statistics.

The observed distribution of hardness ratios is nearly indistinguishable from the simulated distribution.
Summary

• Newest reprocessing increases the amount of data for study of the background by >6X
• Significant changes to the way ESAS works
 • For non-anomalous MOS chips and the pn use the mean corner spectrum
 • For anomalous states use the ESAS v1 augmentation scheme of finding corner spectra with the same spectra shape as that of the observation of interest

• Still significant doubts about anomalous state spectra and non-anomalous state spectra with extreme values of the hardness ratio
• Will construct backgrounds for those chips but
• By default will produce warning and will not include in the total background spectrum
Future?

Reconsider the construction of FWC FOV/FWC corner part of the equation

\[
\text{background} = \frac{\text{FWC FOV}}{\text{FWC corner}} \text{ augmented corner}
\]

in order to find ways of increasing the S/N

Spectral model of the QPB continuum and lines for use in simultaneous fits of background and source.

And, as always, periodic updates of corner spectra databases and anomalous state definitions