Looking Up: An SMD Technology Brown Bag Series

"The Adaptable, Deployable Entry and Placement Technology (ADEPT)"

Paul Wercinski, ADEPT Project Manager
NASA Ames Research Center
May 16, 2017
Outlines:

- ADEPT Technology Overview
 - What challenge is ADEPT addressing?
 - Summary of mission infusion opportunities
 - Functional description and capabilities
- ADEPT SR-1 Flight Experiment
 - Overview and Test Objectives
 - Description and Status
- Next Steps...
 - Demonstrating performance in relevant environments
 - Future mission infusion possibilities
- Summary
Adaptable, Deployable Entry and Placement Technology (ADEPT) Overview

- ADEPT is an atmospheric entry **architecture** for missions to different planetary bodies with atmospheres.
 - Low ballistic coefficient entry vehicle with low L/D enables large payload (20 mT) delivery to Mars surface
 - Enables missions where entry vehicle stowed volume on spacecraft is a constraint
 - Rugged, robust system can be deployed for long durations in transit prior to entry and has damage tolerance to impact events
 - ‘Open back’ deployable shape (no backshell) expected to be dynamically stable in transonic and sub-sonic flight

- **6m ADEPT-VITaL** (Venus) Deployed
- **6m ADEPT-VITaL** (Venus) Stowed in Atlas V Shroud
- **16m Lifting ADEPT** Human Mars Exploration
- **1m Nano-ADEPT** (Mars)
Mechanically Deployables: Often Proposed, Seldom Implemented

SPED, NASA LaRC, 1972

Deployable CMC Decelerator, Astrium, AIAA ADS 2003

Parashield, MIT 1988

Phoenix, U. Maryland, IAC 2006

Challenge: Need flexible material that can survive high aerothermal heating experienced during hypersonic planetary entry
Key Technology Breakthrough enabling ADEPT Carbon Fabric Capability Demonstration

• **Challenge:** Design and Test Flexible Material capable of high aerothermal heating while sustaining high tension loads
 - Multi-layer 3D woven carbon fabric tested above 200W/cm²
 - Test under combined aerothermal and mechanical loading

• **Test Results: Success!**
 - Carbon fabric able to maintain load at temperature.
 - Biaxial tension load has little impact on the rate of cloth layer loss
 - Fabric tested easily withstood a heat load of 15.7 kJ/cm². This is well above the 11 kJ/cm² expected for a Venus
ADEPT Entry Mission
Deliver 1mT Payload to Venus surface

1. Approach
2. Deploy days prior to entry
3. Separation from spacecraft
4. Atmosphere entry
5. Peak heating (250 W/cm²)
6. Pilot chute
7. Subsonic chute deploy
1m ‘Nano’ ADEPT Mission Insertion Possibilities
Small Scale -> Take Advantage of Small Packaging

Venus

Science Pull:
- Delivery of In-situ atmosphere science instruments.
- Achieve low deceleration loads for sensitive instruments

Earth

LEO Return: Secondary on Upper Stage, ISS Downmass or free-flyer on Super Strypi class LV

Mars

Science Pull:
- Global distribution, low cost
- Numerous landers

Dandelander (Malin SSS):
Cubesat distributed surface network concept

Titan

- Lifting ADEPT allows aerocapture at Titan
- Cruise flight with open-back supports RTG thermal management
ADEPT 1m Mission Infusion Example: Mars Secondary Payload Network Landers

Interplanetary Cruise Phase:
~ 9 Months

Secondary Payload Deployment Phase:
Up to 8 Secondary ADEPT landers sequentially deployed after last TCM, no sooner than 1 week from entry interface

Nano ADEPT Network Entry:
- Ballistic Entry, $\beta=5-50$ kg/m²
- Peak heating: 40-110 W/cm²
- Heat Load: 1-4 kJ/cm²
- Peak Decel: 16-21 g
- Terminal Velocity: 40-90 m/sec

Launch
Atlas V 540

Cruise Stage Sep System Placement

Concept of sub m class ADEPT contained inside 12U Sep System

https://marscubesatworkshop.jpl.nasa.gov

5/16/2017
Entry Technologies Considered for Human Missions

Inflatable
HIAD – Hypersonic Inflatable Aerodynamic Decelerator

Deployable
ADEPT – Adaptable Deployable Entry and Placement Technology

Mid L/D
Rigid Structure

Heritage Blunt Capsule
ADEPT Technology Advancement Highlights

Damage Tolerance arcjet testing

High Fidelity Flowfield Modeling of Heating Conditions

Mechanical Strength Testing of Fabric Joints

Fabric Joint Design Validated with Arcjet Testing
ADEPT Development Focus
1m ‘Nano’ Technology Maturation Strategy

- System Level testing in relevant environments, minimal component testing
ADEPT Development Focus
1m ‘Nano’ Technology Maturation Strategy

- System Level testing in relevant environments, minimal component testing
Nano-ADEPT Aeroloads Test (FY15)

- Testing was completed in seven business days at the US Army’s 7x10 Foot Wind Tunnel located at NASA Ames (27-Apr to 5-May 2015)
- Shared funding was provided through NASA STMD GCDP ADEPT program (FY15) and a NASA Ames Center Innovation Fund Award (FY14)

<table>
<thead>
<tr>
<th>Test Objective</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain static deflected shape and pressure distributions while varying pre-tension at dynamic pressures and angles of attack relevant to Nano-ADEPT entry conditions at Earth, Mars, and Venus.</td>
<td>Photogrammetry; String potentiometers; Outer Mold Line (OML) static pressure taps</td>
</tr>
<tr>
<td>Observe dynamic aeroelastic behavior (buzz/flutter) if it occurs as a function of pre-tension, dynamic pressure, and angle of attack.</td>
<td>High speed video; Strut load cells</td>
</tr>
<tr>
<td>Obtain aerodynamic forces and moments as a function of pre-tension, dynamic pressure, and angle of attack.</td>
<td>Internal balance</td>
</tr>
</tbody>
</table>

- All test objectives were met.
- Rich data set was obtained using non-invasive instrumentation
- Data products and observations made during testing will be used to refine computational models of Nano-ADEPT
- Bonus experiment of asymmetric shape demonstrates that an asymmetric deployable blunt body can be used to generate measureable lift
Video Highlights from 7x10 Test

Yaw Sweep 100 psf (4.8 kPa)
ADEPT Development Focus
1m ‘Nano’ Technology Maturation Strategy

- System Level testing in relevant environments, minimal component testing
ADEPT SPRITE C Arcjet Test (Sept 2015)
Design Features

FLOW FEATURES
- Streamlines & Heating Contours

JOINT ANATOMY
- High density structural stitching

CROSS SECTIONAL VIEW

FLOW FEATURES
- Bow Shock
- Separation
- Reattachment

3D WOVEN FABRIC

JOINT SHIELDING LAYERS
- JOINT STITCHING & INSULATING LAYERS
- SHIELDING LAYER INFUSION

TOP VIEW ACREAGE

TRAILING EDGE TENSION CORD POCKET

BOTTOM VIEW ACREAGE

5/16/2017
Test Article Description-Assembly

EXPLODED VIEW

AFT SIDE

FORWARD SIDE
Test Article Description and Conditions

Pre-Test

Test Article 1
Condition 1 for 60 sec
- Graphite Nose
- Six Layer C-Fabric
- Phenolic Infused Joints

Test Article 2
Condition 1 for 40 sec
Condition 2 for 40 sec
- Conformal PICA Nose
- Six Layer C-Fabric
- Phenolic Infused Joints

Test Article 3
Condition 2 for 60 sec
- Graphite Nose
- Six Layer C-Fabric
- Phenolic Infused Joints
- Various Resin Infused Joints

Test Article 4
Condition 2 for 60 sec
- Graphite Nose
- Four Layer C-Fabric
- Various Resin Infused Joints
- Insulating Fabric at Rib Interface

Post-Test

- ~7.2 kJ/cm² Stag pt heat load
- ~7.2 kJ/cm² Stag pt heat load
- ~3.6 kJ/cm² Stag pt heat load
- ~3.6 kJ/cm² Stag pt heat load
ADEPT Development Focus
1m ‘Nano’ Technology Maturation Strategy

- System Level testing in relevant environments
- GCD approved (Aug 2016) SR-1 Sounding Rocket Flight Experiment
 - Demonstrating exo-atmospheric deployment and supersonic stability
 - Aggressive schedule: 1 year between PDR and Launch!

Deployment Prototype
Demonstrator (FY15-16)

SR-1 Sounding Rocket Flight Test (FY17-18)

7x10 Wind-tunnel Aerolloads test (FY15)

SPRITE C System level Arc-jet testing (FY15)
SR-1 Flight Experiment Overview

Key Performance Parameter 1: *Exo-atmospheric deployment to an entry configuration*

Key Performance Parameter 2: *Demonstrate Aerodynamic stability without active control*
SR-1 Animation movie
SR-1 Layout and Subsystems

Deployment mechanism

Ribs

Struts

Electronics Carriage:
- Avionics
- C-band Transponder
- Battery Pack
- GoPro Camera

Late access connectors

Spot Trace

Carbon fabric “skirt”

GPS patch antenna
Pre Launch Integration
RISK: SR-1 not powered and operational

Separation
Risk: Excessive Tip off and no Damage

ADEPT Deployment
RISK: Improper flight attitude at atmosphere entry

Supersonic Aero Stability
RISK: Instability causes tumbling

Launch and Ascent Environments
RISK: Component Failure

On-Board Flight Data Collection
RISK: Data not obtained and stored (no telemetry)

Ground Impact and Data Retrieval
RISK: Impact loads damage SD Cards and/or cause battery thermal event
• The SL-10 separation system has been adapted for SR-1 and prototyped
SR-1 Simple Separation Test

Stowed Fit Check & Separation Demonstration
Long duration stowage test

- ADEPT SR-1 stowed for 85 days to assess long duration storage
SR-1 Flight Experiment
Development Tests driven by Risks

- Pre Launch Integration
 RISK: SR-1 not powered and operational

- Separation
 Risk: Excessive Tip off and no Damage

- ADEPT Deployment
 RISK: Improper flight attitude at atmosphere entry

- Supersonic Aero Stability
 RISK: Instability causes tumbling

- Launch and Ascent Environments
 RISK: Component Failure

- On-Board Flight Data Collection
 RISK: Data not obtained and stored (no telemetry)

- Ground Impact and Data Retrieval
 RISK: Impact loads damage SD Cards and/or cause battery thermal event

Video:
UP Aerospace Launch and Ascent Environments
RISK: Component Failure
Deployment System (Rib release)

Test results

- Vectran cable **retains** rib tips in stowed state
- A separation sensor in the nose cap detects when ADEPT is ejected from the payload module.
- Sensor activates Ni-Chrome burn wire, which cuts through Vectran cable.
- SR-1 spring-actuated deployment occurs immediately after Vectran cable has been cut.
- Burn wire tested in vacuum chamber equivalent to 100K ft altitude.
- Cut time was repeatable 4.5 seconds at 1.6 amps. (Temperature was 66°F)

Ni-Chrome burn wire
(2X for redundancy)

Vectran cable
Pre Launch Integration
RISK: SR-1 not powered and operational

Launch and Ascent Environments
RISK: Component Failure

ADEPT Deployment
RISK: Improper flight attitude at atmosphere entry

Supersonic Aero Stability
RISK: Instability causes tumbling

On-Board Flight Data Collection
RISK: Data not obtained and stored (no telemetry)

Ground Impact and Data Retrieval
RISK: Impact loads damage SD Cards and/or cause battery thermal event

Video: UP Aerospace Launch and Ascent Environments

RISK: Component Failure On-Board Flight Data Collection
RISK: Data not obtained and stored (no telemetry)

SR-1 Flight Experiment Development Tests driven by Risks
• The maximum vehicle length is constrained by the need to avoid impingement with the high-speed flow as it expands in the wake
 – Aerodynamic interaction with shear layer could cause unpredictable flight dynamics
 – No “payload heating” concerns with SR-1, but need to avoid any impingement for DRM traceability
• This need puts severe limitations on the volume available for instrumentation
 – Most volume is already consumed by crushable mass, C-Band transponder, and AVA
• Current vehicle length: 0.32 m (nose tip to aft end)
 – Payload configuration is getting close to the shear layer at this angle of attack and is feeling some effects from the higher velocity flow
 – Magnitude of induced forces are an order of magnitude lower than forebody
 – Recommendation to limit vehicle length to 0.32 m
ADEPT SR-1 Ballistic Range Test

- Objective: obtain free-flight dynamic data at supersonic speeds (Mach 1.2-Mach 3.0)
- Test data informs a decision on Center of Mass location for SR-1, a mitigation step for top project risk

ADEPT SR-1 Ballistic Range Models

ADEPT SR-1 Model and Sabot

HFFAF Test Section Exterior

HFFAF Features
- Enclosed, controlled-atmosphere test section, 24 m (75 ft) long
- 16 orthogonal-view digital shadowgraph stations, spaced every 1.524 m (5 ft).
- High-speed video cameras to record launch and sabot separation characteristics.
- Various hypervelocity and supersonic launchers.
• ADEPT SR-1 shape presented new challenges to Ballistic Range facility

Clean sabot separation!
Preliminary Ballistic Range Test Results

- 15 total shots were performed
 - 11 calibration shots
 - 4 “for credit” shots
- Mach at mid-range of ”for credit” shots: 1.225, 1.208, 1.493, 2.245
- **Preliminary** results:
 - The vehicle is dynamically unstable at low angle of attack (typical of blunt body entry vehicles)
 - Limit cycle oscillation amplitude is ~25º at Mach 2.2
 - In general, observed dynamic behavior supports moving CG forward to x/D=0.15 from current nominal location (x/D = 0.17) in order to improve stability for SR-1

Mach 1.50, -13.7º angle of attack

Mach 2.58, 19.2º angle of attack
Data from the ADEPT ballistic range experiment is being utilized to assess the validity of the free-flight CFD solver at low supersonic Mach numbers.

Additionally, this experiment provides unique data for “flat-backed” aeroshell designs, which have highly separated flow fields at all supersonic Mach numbers.

Result from the analysis show good agreement with experiment at Mach 2.3.

Reasonable agreement with experiment for Mach numbers approaching 1.0.

Comparison of predicted attitude (solid lines) to experimental data (symbols), for Mach 1.23 (left) and Mach 2.36 (right) trajectories.
Test Objectives:
1. Obtain the dynamic characteristics (i.e., attitude and rotation rates vs. time) at two full-scale altitudes (1.2 and 15 km MSL).
2. Determine the effects of large upsets on the dynamic characteristics.
3. Determine the effects of center of mass (CoM) location on the dynamic characteristics.
4. Determine the terminal descent velocity.
 - 50%-scale model designed for 1.2 km MSL (WSMR ground altitude)
 - 15%-scale model designed for 15 km MSL (high-altitude subsonic)
• The models flew near the expected airspeed.
• The 50% model was statically and dynamically stable at a wide range of CoM locations.
• Unperturbed pitch/yaw oscillations were relatively small in amplitude.
• Inverted, the model is statically stable and dynamically unstable: it eventually tumbles.
• For the 15% model (high altitude), with the CoM in a near nominal location, the model was statically and dynamically stable for the most part.
• Once either model tumbles, they tend to glide (move laterally). The models give no indication that they will recover from a tumble if it occurs.
Bringing the Data Home
Avionics and Power Subsystems

Aft Deck:
- GPS Antenna
- Spot Trace
- Late Access Connectors

Electronics Carriage:
- Avionics
- C-Band Transponder
- Power System (EPS)
- Camera

Nose Cap:
- C-Band Antenna
- Separation Sensors
How SR-1 Data Sources will be Used

- **Electronics Carriage**
 - SD cards must survive ~ 25 m/s (54 mph) impact velocity!

DATA SOURCES

- Primary IMU
- Backup IMU
- Magnetometer
- GPS Receiver
- GoPro® Camera on Launch Vehicle
- Deployment Confirmation LED
- C-Band Transponder
- Atmospheric Pressure and Temperature Measurement with Weather Balloon
- SPOT Trace® C-Band Transponder
- Ground Tracking Radar
- GoPro® Camera on ADEPT

USES

- **C-Band Transponder**
 - USE: Locate SR-1 after ground impact

- **Ground Tracking Radar**
 - USE: Trajectory reconstruction for dynamic stability assessment and FF-CFD simulation validation

- **GoPro® Camera on Launch Vehicle**
 - USE: Confirm full and locked deployment

- **EPS Board**

- **WSMR Ground Tracking Stations**

AVA

GoPro Camera

5/16/2017
ADEPT SR-1 Flight Hardware Integration Underway!

Hardware Assembly, Integration and Test Progressing Well!

ADEPT SR-1 Flight Unit Ship Date is Aug 21, 2017
SL-12 Launch scheduled for Sept 18, 2017
After ADEPT SR-1.... Next Steps!

- ADEPT SR-1 is a logical first step, but only a first step!
- Most mission applications will need...
 - Demonstrate larger scale
 - Demonstrate mission relevant entry heating
 - Demonstrate operational flight systems such as guided lift
ADEPT Mission Capability Evolution

VENUS, MARS, TITAN

Lifting/Non-lifting Stowed Volume Aeroheating

SR-1
- 0.7m 70deg Ballistic 15kg
- SR-125km apogee (Mach3)

SR-2
- 2m L/D=0.25 80kg
- Unguided, hypersonic Lifting capable
- SR-450km apogee (Mach 7)

ORB-1
- 2m L/D=0.25 150kg
- LEO, Guided hypersonic flight

LARGE MARS PAYLOADS

Lift Capability Large Scale Aeroheating

Mars Precursor-1
- 8m L/D=0.25
- Atlas LV compatible
- ~2mT landed payload
- Earth Demo Exploration-Class EDL Ops and Mars Entry Environments

Explore-1
- 16m L/D=0.25
- Dual Pulse Aerocapture and EDL Capable
- Delivers 20 MT Payload
ADEPT Mission Infusion Possibilities

2017
SR-1
• 0.7m 70deg Ballistic 15kg
• SR-125km apogee (Mach3)

2020

2023

2026

Venus, Mars, Titan

Lifting/Non-lifting
Stowed Volume
Aeroheating

Large Mars Payloads

Lift Capability
Large Scale
Aeroheating

Mars Network Landers

5/16/2017
ADEPT Mission Infusion Possibilities

- **2017**
 - Venus, Mars, Titan
 - Lifting/Non-lifting
 - Stowed Volume
 - Aeroheating

- **2020**
 - Large Mars Payloads
 - Lift Capability
 - Large Scale
 - Aeroheating

- **2023**
 - 8 m L/D=0.25
 - Atlas LV compatible
 - ~2mT landed payload
 - Earth Demo Exploration - Class EDL Ops and Mars Entry Environments

- **2026**
 - SR-2m	L/D=0.25	80kg
 - Unguided, hypersonic Lifting capable
 - SR-450km apogee (Mach 7)
 - Mars Precursor

- **Venus Atmosphere in-situ science**
 - 16m Scale
 - Lift Capability
 - Large Scale
 - Aeroheating

- **Venus, Atmosphere in-situ science**
 - Large Mars Payloads
 - Lift Capability
 - Large Scale
 - Aeroheating

5/16/2017
Lifting Nano ADEPT Flight Test Overview

Problem / Current Solution:

- Large payload delivery to Mars Surface requires guided lift capability to support aerocapture and precision EDL concept of operations
- New capabilities for science missions to other planets (Venus, Titan, Mars) provided by Lifting ADEPT architecture
- Design of the mechanical deployable ADEPT for lifting configurations able to execute hypersonic guided flight
 - Demonstrate low L/D deployable capable of relevant heating environments

Proposed solution:

- Perform design studies of an Earth flight test (LEO) of an asymmetric shaped Nano (1m class)-ADEPT
- Leverages design experience from ADEPT SR-1 sounding rocket flight test

Con-Ops Overview

Terminal Descent and Recovery
ADEPT Mission Infusion Possibilities

Venus, Mars, Titan

- Lifting/Non-lifting
- Stowed Volume
- Aeroheating

Large Mars Payloads

- Lift Capability
- Large Scale
- Aeroheating

Mars Precursor-1
- 8m L/D=0.25
- Atlas LV compatible
- ~2mT landed payload
- Earth Demo Exploration-Class EDL Ops and Mars Entry Environments

5/16/2017
Medium Mars (Precursor Concept)

Concept Overview and Targeted Capability
- Atlas V 541 (4000 kg inject to Mars)
- 3500kg at Mars entry (500 kg cruise stage)
 - 2000+ kg payload to Mars surface
- Global access (deliver up to +2km MOLA)
- Subsonic parachute (Orion design), terminal descent prop
 - No supersonic chutes, No supersonic retro propulsion

Open Concerns:
- Limited analysis to date, More trades and assessments needed
- Orion Chute opening process
 - Chute deploy Mach and q conditions
 - Drogue/Pilot deploy
 - Packaging volume
- Packaging and Entry trajectory design

Medium ADEPT Mars Characteristics
- 8.5m Diameter
- L/D=0.25
- m/CdA = 35 kg/m2
- Chute Term. Vel. = 19.2 m/s (43 mph)

Entry Conditions:
- Mass: 3500 kg
- V = 6 km/s
- H = 120 km
- Gam = -12°

Entry Conditions:
- Assumes shoot deployed at 8 km but does not open until 6 km
- Terminal descent prop burn not simulated
Summary

• **ADEPT SR-1**
 – “First step” flight experiment demonstrating ADEPT flight and operations

• **Looking beyond SR-1...**
 – Small spacecraft mission using an ADEPT EDL to overcome volume limits
 – Secondary payloads to Venus, Mars, and LEO entry are feasible near-term applications. Consider Discovery and New Frontiers pathways.
 – Nano-ADEPT provides technology development extensible to large ADEPT applications

1m ADEPT Mars Lander Malin SSS Concept (2014)
2m-3m Lifting ADEPT LEO Flight Test Concept NASA Ames & JHU-APL Study (2016)
8m Lifting ADEPT Mars Precursor Human Exploration