Cube Quest Challenge

Advanced CubeSat Technologies for Affordable Deep Space Science and Exploration Missions

Ground Tournaments, the Moon, and Beyond

Jim Cockrell
Cube Quest Challenge Administrator
iCubeSat- 30 May 2017
• CubeSats in Deep Space
• What’s Cube Quest?
 – History: Government Challenges
 – Why a Cube Quest?
 – Rules and Prize Structure
• Today’s Status
 – GT4 Competitors
 – Emerging Technologies
• Next Steps
 – GT4 winners
 – In-space Competition
• Astrophysics:
 – Distributed RF and Optical Arrays on affordable satellite constellation
 – Affordable, time-correlated (simultaneous) multi-point observations of NEOs (mass density, albedo, etc)

• Planetary Explorations:
 – Distributed measurements (Ex: surface seismographic; Mars “weather systems”, multi-site impactors to detect lunar subsurface volatiles, etc.)
 – Co-ordinated assets (Ex: landers paired with orbiting relays)

• Heliophysics:
 – Global coverage
 – Multiple observations of transient events (Ex: radio occultation)
 – Geographically distributed time-correlated “space weather” measurements

• Earth Science
 – Global coverage (multiple)
 – Time correlated weather, oceanic observations
• Advantages over traditional satellites:
 – Low cost
 – Low mass
 – Standard LV interface

• Developed, deployed in fraction of time, cost, of traditional “high-stakes” satellite

• Interchangeable secondary payloads
 – increased launch opportunities

• Array of small CubeSats > single conventional probe:
 – asteroid seismographs
 – array of Mars weather stations
 – distributed, temporally correlated measurements
 – redundancy at the system level; robust system of systems
 – nodes for antenna arrays or telescope arrays
To-date, CubeSats haven’t ventured beyond LEO:

<table>
<thead>
<tr>
<th>Limitation</th>
<th>SoA</th>
<th>Deep Space Missions Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited comm range</td>
<td>Low-gain dipoles or patches mainly used</td>
<td>high gain directional antennas needed</td>
</tr>
<tr>
<td>Limited comm data rate</td>
<td>Low power, amateur band transmitters mainly used</td>
<td>High-power, high frequency, wide bandwidth transmitters needed</td>
</tr>
<tr>
<td>Lacking radiation tolerance</td>
<td>COTS, low-cost parts used; more benign environment of LEO</td>
<td>Radiation shielding, fault detection, fault tolerance</td>
</tr>
<tr>
<td>Lacking in-space propulsion</td>
<td>Not demonstrated (except solar sails); chemical fuel/pressurized containers prohibited</td>
<td>High thrust, high ISP needed; chemical, electrical, solar</td>
</tr>
<tr>
<td>Depend on Earth-based nav references</td>
<td>Passive magnetorquers used; GPS or magnetometers sense Earth’s magnetic field</td>
<td>Start trackers, moon/sun sensors, radar altimeters and other sensors needed for deep space</td>
</tr>
</tbody>
</table>
• Extend CubeSat capabilities to deep space
• Achieve more affordable science and exploration missions
• Enable unique missions (swarms, cooperative operations)
• Tap into the creativity of “citizen inventors”

Future Mission Needs of Stakeholders
Drive the Challenge
In 1761, John Harrison (clock maker) solved the British maritime navigation challenge.

In 1809, Nicolas Appert (baker) solved the Napoleon challenge for food preservation.

In 1901, Alberto Santos-Dumont (coffee plantation heir) won the French airship challenge.

In 1910, Georges Chavez (pilot) won the Milan Committee challenge being the first to fly over the Alps.

In 1927, Charles Lindbergh (mail pilot) won the Orteig Prize being the first to fly across the Atlantic Ocean.

In 1977 & 1979, Paul MacCready (aeronautic engineer) won the Kremer Prizes for human-powered flight challenges.

In 2004, Burt Rutan (aerospace engineer) won the X-Prize Ansari challenge being the first private entity to enter space twice within two weeks.

In 2007, Peter Homer (unemployed engineer) won the NASA Astronaut Glove challenge by making a better glove.

13 Sept 2016
• 1707 British Naval accident off Isle of Scilly, 1,400 sailors died. On time, accurate arrival at ports of call hampered by inability to measure longitude

• The 1714 Longitude Act called for a portable, practical solution to the problem

• Amateur clock maker John Harrison’s marine chronometer was the most successful submission to the Longitude Committee, eventually securing prize of £20,000 (Today's value £2,080,000)

• Captain Cook took a version of Harrison’s device on his second, three year voyage, returning to prove that Harrison’s innovative design had finally conquered one of the perils of the high seas.

• This was a successful public prize challenge!
• NASA STMD’s Centennial Challenges Program, initiated in 2005, named after Wright Brothers’ Kitty Hawk flight
• Engages public in advanced technology development
• Prizes for solving problems of interest to NASA and the nation
• Competitors based in US; not supported by government funding.
• Since 2005, there have been eight challenge categories, resulting in more than 20 challenge events to date.
• More than $6 million in prize money has been awarded to more than 17 different teams
• Summer 2013, work began on Cube Quest Challenge

Current Centennial Challenges:
• Sample Return Robot
• 3-D Printed Habitat
• Mars Ascent Vehicle
• Cube Quest
• NASA’s first non-crewed lunar flyby mission of Orion from SLS
 – Launch in late 2018
• Capacity for thirteen 6U-sized CubeSats
• Secondary Payloads deploy after Orion departure into lunar flyby trajectory
• 3 slots are reserved for top-3 qualified Cube Quest Challenge winners
• **Objective:** Achieve Lunar Orbit
 • **Requires:**
 – Propulsion, high dV
 – Navigation without GPS or Earth’s magnetic field

• **Objective:** Hi Data Rate, Large Data Volume, Far Comm Distance
 • **Requires:**
 – High power transponder; high gain antenna; long & frequent ground station passes; deployable antennas; stable ACS; precise knowledge of Earth direction

• **Objective:** Longevity (survival)
 • **Requires:**
 – Rad hardening, redundancy, shielding

• All are critical capabilities for deep space operations
Ground Tournaments (GT)

- 4 Rounds
- Approx every 6 months

GT-1 - top 5 win $20k
GT-2 - top 5 win $30k
GT-3 - top 5 win $30k
GT-4 - top 5 win $20k
Total $500k

Top 3 qualified GT-4 teams launch free on EM-1

Lunar Derby
While in lunar orbit

- Achieve Lunar Orbit $1.5M/shared, $1M max per team
- Error-free Communication
 - Burst Rate- $225k/25k
 - Total Volume- $675k/75k
- Longevity
 - $450k/50k

Total $5.0M Prize Money

Deep Space Derby
While range ≥4M km

- Farthest Distance
 - $225k/25k
- Error-free Communication
 - Burst Rate- $225k/25k
 - Total Volume- $675k/75k
- Longevity
 - $225k/25k

8 September 2016

CubeQuest Lessons Learned
Ground Tournaments

Teams submit GT documents

5 Judge Panel
- 2 NASA
- 3 Non-NASA leaders
 - Industry
 - Academic
 - DoD

GT Winners:
Top 5 Teams
Scoring > 3.0/5.0

40% Likelihood of Mission Success

60% Compliance with Rules, SLS IDRD, SLS Safety Rqts

Total GT Score

• Rules
• GT Workbook
• SLS IDRD
• SLS Safety Rqts (or equiv. launch provider rqts)

Team of technical SMEs

8 September 2016
CubeQuest Lessons Learned
SLS Safety and Interface Requirements

- SLS Payload Safety Reviews (to fly on EM-1)
- Or equivalent, for 3rd-party launches

Any allowable part of the spectrum
- subject to FCC public freq. alloc. and licensing regs

Comm data eligible for prizes
- May use NASA DSN – at your cost
- DSN tracks all trajectories; checks lunar orbit, 4M km range
- Comm data format per Rules, to qualify

Comply with Orbital Debris and Planetary Protection laws and regs

http://www.nasa.gov/cubequest/reference
<table>
<thead>
<tr>
<th>GT1</th>
<th>GT2</th>
<th>GT3</th>
<th>GT4</th>
<th>EM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Alpha Cubesat - Xtraordinary Innovative Space Partnerships, Inc</td>
<td>1. Alpha CubeQuest, XISP Inc</td>
<td>1. Team Miles Fluid & Reason, Tampa, Florida (placed first in GT-1 and fifth in GT-2)</td>
<td>1. Team Miles Fluid & Reason, Tampa, Florida</td>
<td>?</td>
</tr>
<tr>
<td>3. HuskySat - University of Washington</td>
<td>3. Eagles-Quest, Embry-Riddle Aeronautical University</td>
<td>3. CU-E3- University of Colorado, Boulder</td>
<td>3. CU-E3- University of Colorado, Boulder</td>
<td></td>
</tr>
<tr>
<td>5. MIT KitCube - Massachusetts Institute of Technology</td>
<td>5. Goddard Orbital and Atmospheric Testing Satellite (GOATS), Worcester Polytechnic Institute</td>
<td>5. SEDS Triteia - University of California, San Diego</td>
<td>5. SEDS Triteia - University of California, San Diego</td>
<td></td>
</tr>
<tr>
<td>7. Open Orbiter Lunar I - University of North Dakota</td>
<td>7. MIT KitCube, Massachusetts Institute of Technology</td>
<td>7. MIT KitCube, Massachusetts Institute of Technology</td>
<td>7. MIT KitCube, Massachusetts Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>9. Project Selene - Flintridge Preparatory School</td>
<td></td>
<td>9. SEDS Triteia, SEDS University of San Diego</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Heimdallr, Ragnarok Industries, Inc.</td>
<td></td>
<td>10. Team Miles, Fluid & Reason LLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. SEDS UC San Diego - University of California - San Diego</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Team Miles - Fluid & Reason LLC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. True Vision Robotics - Isakson Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current Teams – GT4 April-June 2017

* - indicates EM-1 Qualifier

Industry

* Heimdallr
Ragnarok Industries, Inc

* Team Miles
Fluid & Reason LLC

Academia

* Cislunar Explorers
Cornell University

* SEDS UC San Diego
University of California - San Diego

* CU-E3
University of Colorado – Boulder

Lunar Derby
Deep Space Derby

13 Sept 2016
CubeQuest for Space2016 17
• Comm
 – UHF, S-, X-, C- band
 – Patch antennas – from moon and beyond
 – Deployable antennas

• Ground Stations
 – DSN
 – WFF UHF
 – AMSAT X- and S-band
 – Commercial
 – Univ dishes
 – Arecibo

• Propulsion
 – EP
 – 3D printed thrusters
 – Electrolysis of H2O/H2O2

• Other Technologies
 – Rad hardened CPU, memory, error checking and redundancy
 – Blue Canyon GNC / ADCS
 – Custom design:
 • Sun sensors
 • Star trackers
 • Reaction wheel
 • Imagers / quaternions
Propulsion

- COTS
 - ConstantQ plasma thruster (Iodine)
 - ExoTerra Resources Hall Effect
 - Standard Micro Propulsion System from Vacco, cold gas, for attitude control

- Custom In-House
 - 3D printed cold gas for attitude control
 - Electrolysis of water for H2 and O2, for 3D printed titanium thruster fuel and oxidizer
 - Hydrogen peroxide monopropellent for 3D printed Inconel 716

Other Tech

- Rad-hard components
 - deep space radiation, longer mission lifetimes intensify effect. Lunar orbit provides a proving ground for radiation-based experiments or technology demonstrations.
 - 1 team plans Resilient Affordable CubeSat Processor (RACP), a microcontroller and 3 ARM 15 SoC uPs., with a health monitoring and management system to check processors and subsystems

- Navigation Systems
 - No GPS or magnetic field in cis-lunar space
 - Clue Canyon Technologies XACT star tracker, sun sensor and reaction wheels.
 - Or combinations of their own sun sensors, and COTS inertial sensors for ADS.
 - GEO-hard Miniature Integrated Star Tracker (MIST) from Space Micro,
 - In-house ADCS, with in-house reaction wheels, in-house star tracker and sun sensors
 - Navigate using Raspberry Pi camera to image Earth, Sun and Moon, and gyro using transformation matrix to spacecraft body from and inertial frame.
• Communication Technologies

1. RF Bands Utilized
 • S-Band
 – Commonly used but cutting-edge for CubeSats
 – Teams plan S-band for radio comm and trajectory determination
 • X-Band
 – DSN primarily uses X-band, but CubeSats haven’t the power to use before
 – Teams plan X-band to commercial ground stations or DSN
 • C-Band
 – Has some use in general sat comms; 5cm band is amateur band
 – Team plans AMSAT in C-band
 • UHF
 – Often used in CubeSats in amateur bands, to lots of amateur gnd stns
 – Team plans UHF for long distance using WFF 18m dish

2. Antenna Design
 • Patch Antennas
 – Commonly used on CubeSats due to small size and low cost; but lacking in gain
 • Deployables
 – 1 team plans to use a reflectarray on reverse side of solar panel, fed by deployable feed horn
What’s the Status?

• **GT-4 the final Ground Tournament**
 – Judging underway now!
 – Document submittals received April 6
 – Supplemental submittals April 19 (test results)

• **GT-4 winners to be announced at SmallSats-Deep Space Symposium June 8**

• EM-1 payload delivery April 2018
• Launch late 2018
• In-space competition ends EM-1 launch + 365days
CubeSats will soon enable affordable science and exploration missions in deep space.

Citizen inventors may help NASA achieve mission goals, advance CubeSat capabilities.

May the best CubeSat win!
Advanced CubeSat Technologies for Affordable Deep Space Science and Exploration Missions

Questions?