NASA Investments in Electric Propulsion Technologies for Large Commercial Aircraft

Dr. Nateri Madavan
Associate Project Manager
NASA Advanced Air Transport Technology Project
NASA Ames Research Center, Moffett Field, California

Electric and Hybrid Aerospace Technology Symposium 2016, November 9, 2016
NASA Aeronautics Vision for Aviation in the 21st Century

U.S. leadership for a new era of flight
NASA Aeronautics Strategic Thrusts for Electrified Aircraft

Strategic Thrust 3: Ultra Efficient Commercial Vehicles

- **2015-2025**: Aircraft on defined path to fleet-level carbon neutral growth relative to 2005 levels
- **2025-2035**: Aircraft improvements to achieve fleet-level carbon neutral growth relative to 2005 levels
- **2035+**: Aircraft enabling a 50% fleet-level carbon reduction reduction from 2005 levels

Evolutionary ➡️ Revolutionary ➡️ Transformational

Strategic Thrust 4: Transition to Low Carbon Propulsion

- **2015-2025**: Low-carbon fuels for conventional engines and exploration of alternative propulsion systems
- **2025-2035**: Initial introduction of alternative propulsion systems
- **2035+**: Introduction of alternative propulsion systems for aircraft of all sizes
Explore alternative propulsion systems that can reduce carbon, noise, and emissions from commercial aviation

Cleaner, quieter systems
Potential for vehicle system efficiency gains (use less energy)
Leverage advances in other transportation and energy sectors
Address aviation-unique challenges (e.g. weight, altitude)
Recognize potential for early learning and impact on smaller or shorter range aircraft

Address Key Challenges
- Electrical system weight
- Energy storage capabilities
- Thermal management
- Flight controls
- Safety
- Certification

Laying the foundation for a future of sustainable aviation through wind tunnel testing of aircraft and engines and a renewed emphasis on flight testing

Green Aviation investments in
- Alternative Fuels
- New Configurations
- Emissions and Noise Reductions

Potential X-Planes
- Truss-braced wing
- Over-the-Wing Nacelle
- Boundary Layer Ingestion
- Blended Wing Body
- Turbo- and Hybrid-Electric Propulsion

First Demonstrators
- Maxwell X-57
- QuESST
NASA New Aviation Horizons Flight Demo Plan

Hybrid Electric Propulsion (HEP) Demonstrators

- Purpose-Built" Ultra-Efficient Subsonic Transport (UEST) Demonstrators
 - Design & Build
 - Flight Test
 - Preliminary Design
 - Ground Test Risk Reduction
 - Small Scale “Build, Fly, Learn”

- Fully integrated UEST Demonstrator
 - Design & Build
 - Flight Test
 - Preliminary Design

- Images Credit: Lockheed Martin

Validated HEP concepts, technologies and integration for U.S. industry to lead the Clean Propulsion Revolution

Validated ability for U.S. industry to build transformative aircraft that use 50% less energy and contain noise within the airport boundary

Enable Low Boom Regulatory Standard and validated ability for industry to produce and operate commercial low-noise supersonic aircraft

Life Cycle Cost Est: $430M

National Aeronautics and Space Administration
Electrified Aircraft Design Space

- Electric, hybrid-electric, and turboelectric propulsion offers many new degrees of freedom.
- Point designs help explore the potential.
- Mission profiling, airport infrastructure, and nontraditional airspace operations additional considerations.

Electrified Propulsion Vehicle Configurations

Vehicle Configuration Examples
- Baseline Aircraft with Pooled Turbo-Fan
- SCEPTOR 4 PAX X-Plane
- AATT 50 PAX STUDIES
- SUGAR VOLT 150 PAX Study
- Current NRA 150 PAX Studies
- STARC-ABL 150 PAX Study
- ECC-150 150 PAX Studies
- N3-X 300 PAX Turbo-Electric
NASA N3-X (Fully Turboelectric/Distributed/BLI)

Baseline is B777-200LR/GE90-115B

Wing-tip mounted superconducting turbogenerators

Power distributed electrically from turbine-driven generators to superconducting motors driving electric fans in a continuous nacelle

Fuel burn benefits relative to 2000 baseline

• 70% / 72% with cryocooler / LH2 (relative to 2000 technology baseline)
• 18% / 20% with cryocooler / LH2 (relative to N+3 HWB with UHB turbofans)

N3-X w/ MgB2 + LH2

Passengers: 300
Range: 7500 nm
Cruise Speed: Mach 0.84
Generators: 2x30 MW
Motors: 14x4.3 MW

Boeing SUGAR Volt (Parallel Hybrid)

750 Wh/kg battery energy density assumed

1.3 MW reduces fuel consumption to meet NASA N+3 goal at the same energy consumption as SUGAR High

5.3 MW reduces fuel consumption further at the price of increased energy consumption compared to SUGAR High

TRL of 4-6 possible by 2025

Ref: Boeing N+3 Subsonic Ultra Green Aircraft Research (SUGAR) Final Report
Parallel Hybrids with Expanded Mission Optimization

Parallel hybrids (podded configurations) may allow fleet retro-fit or earlier entry into service

Three independent studies show interesting results
- Boeing SUGAR VOLT concept with hybrid propulsion during cruise
- UTRC concept with hybrid propulsion during take-off and climb
- Rolls-Royce (RR) concept using fleet-optimized hybrid architecture

Each study made independent assumptions for future baseline vehicle to identify benefits resulting from hybridization
- 6-24% fuel burn savings for 900 nm mission
- 0% energy savings for Boeing; 2.5-7% energy savings for UTRC and RR concepts
- 6-24% emissions reductions also achievable
- Noise benefits low for Boeing and UTRC concepts (same fan, smaller core); moderate for RR concept (smaller fan and core)

Important Note: These studies were performed with very different assumptions. Result comparisons are provided for reference only.
Fuel burn and CO2 reductions without improvements in battery technology

- 154 PAX, M=0.7 Concept
- Downsized engines provide 80% of takeoff and 55% of cruise thrust
- Electrically power aft propulsor provides 20% of takeoff and 45% of cruise thrust
- 2x1.4 MW Generators, 2.6 MW Motor
- Configuration meets speed and range requirement of baseline aircraft
- Uses existing airport infrastructure
- 7-12% fuel (and energy) savings relative to baseline advanced technology aircraft for 900-3500 nm mission

ESAero ECO-150—Fully Turboelectric / Distributed

150 PAX, M=0.8, 3500 nm range, concept

"Split-wing" turboelectric system with 2 turbogenerators and 16 motor driven fans embedded in wing

Initial studies considered superconducting motors and generators

Recent studies focused on conventional (ambient temp) non-superconducting systems

Single-Aisle Electrified Aircraft Design Examples

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>CO2 Reduction from Current Baseline</th>
<th>TRL 4-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO-150</td>
<td>44%</td>
<td>2020</td>
</tr>
<tr>
<td>STARC-ABL</td>
<td>59%</td>
<td>2025</td>
</tr>
<tr>
<td>SUGAR Volt</td>
<td>59%</td>
<td>2025</td>
</tr>
<tr>
<td>SUGAR Freeze</td>
<td>68%</td>
<td>2030</td>
</tr>
<tr>
<td>N3-X (Twin-Aisle)</td>
<td>70%-75%</td>
<td>2030</td>
</tr>
</tbody>
</table>
Technology development targeted toward large commercial aircraft

- Propulsion System Conceptual Design
- High Efficiency/Specific Power Electric Machines
- Flight-weight Power Systems and Electronics
- Integrated Flight Simulations and Testing
- Enabling Materials for Machines and Electronics
- Turbine/Generator Integration and Controls

Powertrain, Controls and Flight Simulation Testbeds and Advanced CFD

Exploring tube-and-wing architectures

Advanced Materials and Novel Designs for Flightweight Power

Superconducting and Ambient Motor Designs
Enable increasingly electrified aircraft propulsion systems with minimal change to aircraft outer mold lines.

Explore and demonstrate vehicle integration synergies enabled by electrified aircraft propulsion.

Gain experience through integration and demonstration on progressively larger platforms.

Modeling Architecture Exploration Test Beds Component Improvements

Knowledge through Integration & Demonstration