JWST NIRCam Time Series Observations

Tom Greene (NASA Ames)
E. Schlawin (UA)
& UA / STScI NIRCam team:
D. Kelly, J. Stansberry,

ETEO w/JWST
July 10, 2017

NIRCam TSOs
Introduction

The JWST Near Infrared Camera (NIRCam) observes from 0.6 to 5.0 μm and offers imaging, coronagraphy, and grism slitless spectroscopy. NIRCam has 2 modules pointing to adjacent fields of view. Each module uses a dichroic to observe simultaneously in a short-wavelength channel (0.6–2.3 μm) and a long-wavelength channel (2.4–5.0 μm).

NIRCam has 5 observing modes for science:

- Imaging of two 2.2' × 2.2' fields separated by 44" covering 9.7 arcmin² in total
- Coronagraphic imaging at multiple wavelengths
- Wide field slitless spectroscopy (2.4–5.0 μm) using grisms with resolving power R = λ/Δλ ~ 1500
- Time series imaging (photometric monitoring)
- Grism time series (spectroscopic monitoring)

NIRCam will also obtain wavefront sensing measurements used to align and phase JWST’s primary mirror.

Focus of this talk

From https://jwst-docs.stsci.edu/display/JTI/
NIRCam Fields of View (from STScI Jdox)

Module A

- coronagraph masks
- overlapping FOVs obtained simultaneously
- when projected on detectors

Module B

- Time series
- imaging
- 64"

Time series spectra

44"

4-5"

42"

5.1'

20"

129"

129"
NIRCam modes: selectable with wheels

No Short Wavelength Spectroscopic Capabilities in Cycle 1

From OTE

0.6 – 2.4 μm
Short Wavelength Channel

2,4 – 5 μm
Long Wavelength Channel

Simultaneous SW imaging is possible!

2 LW grisms in each module provide R~1500 slitless spectroscopy: Chose dispersion orientation and filters to suit your science
Left: NIRCam spectral image of the OSIM super-continuum lamp point source taken with the LWA R grism and F444W filter during JWST instrument testing.

Right: Extracted spectrum. The continuum decreases toward longer wavelengths due to low fiber transmittance, and the broad feature near 4.27 μm is due to CO\textsubscript{2} absorption. These are artifacts of the test equipment and not NIRCam itself.

* NIRCam FOV is 2.’2 x 2.’2 with dispersion of 10 Å per 0.”065 x 0.”065 pixel
NIRCam Spectral Coverage & Resolution

NOTE: Total spectroscopic throughput is the **product** of Grism curve and selected filter!

Figure 3. Left: Total system throughput including all OTE and NIRCam optics and the detector quantum efficiency for several NIRCam filters. The theoretical LW grism efficiency curve (shown for the A module) must be multiplied by the filter curves to produce the system throughput at each wavelength. The Module B LW grisms are anti-reflection coated on only 1 side and therefore have throughputs approximately 25% lower than the LWA grisms. Right: Grism FWHM spectral resolving power vs. wavelength for point sources, limited by pixel sampling of the PSF at shorter wavelengths ($\lambda \lesssim 4 \mu\text{m}$) and limited by the circular beam factor and diffraction at longer wavelengths ($\lambda \gtrsim 4 \mu\text{m}$).
NIRCam can observe bright stars!

See Greene+ (2017) JATIS article for more Module A & B saturations and sensitivity values

<table>
<thead>
<tr>
<th>λ (μm)</th>
<th>K_{sat} (A0V)(^c)</th>
<th>K_{sat} (M2V)(^c)</th>
<th>Filter(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>4.3</td>
<td>4.2</td>
<td>F322W2</td>
</tr>
<tr>
<td>2.7</td>
<td>4.4</td>
<td>4.4</td>
<td>F322W2</td>
</tr>
<tr>
<td>2.9</td>
<td>4.3</td>
<td>4.3</td>
<td>F322W2</td>
</tr>
<tr>
<td>3.1</td>
<td>4.1</td>
<td>4.1</td>
<td>F322W2</td>
</tr>
<tr>
<td>3.3</td>
<td>4.1</td>
<td>4.3</td>
<td>F322W2</td>
</tr>
<tr>
<td>3.5</td>
<td>4.0</td>
<td>4.2</td>
<td>F322W2</td>
</tr>
<tr>
<td>3.7</td>
<td>3.9</td>
<td>4.1</td>
<td>F322W2</td>
</tr>
<tr>
<td>3.9</td>
<td>3.7</td>
<td>3.9</td>
<td>F322W2</td>
</tr>
<tr>
<td>4.1</td>
<td>3.4</td>
<td>3.7</td>
<td>F444W</td>
</tr>
<tr>
<td>4.3</td>
<td>3.1</td>
<td>3.4</td>
<td>F444W</td>
</tr>
<tr>
<td>4.5</td>
<td>2.9</td>
<td>3.0</td>
<td>F444W</td>
</tr>
<tr>
<td>4.7</td>
<td>2.5</td>
<td>2.7</td>
<td>F444W</td>
</tr>
<tr>
<td>4.9</td>
<td>2.1</td>
<td>2.4</td>
<td>F444W</td>
</tr>
</tbody>
</table>

\(^c\) K-band Vega magnitudes for saturation (80% full well or 65,000 electrons) for 0.68 s integrations of 2048 x 64 pixel NIRCam can observe bright stars!
Time-series imaging is also possible

- \(\lambda < 2.4 \, \mu m \) TSO imaging can be done simultaneously with either \(\lambda > 2.4 \, \mu m \) imaging or spectroscopy
- SW observations can be done with weak lenses for better bright limits and potentially higher precision photometry
- Show HAT-P-18 b APT example???
Setting TSO parameters

• Determine how much dwell time for each object
• Set subarrays and exposure parameters
• Set SW filter: simultaneous $\lambda < 2.4 \ \mu m$ imaging
• Consider target acquisition
 – Offset acquisition required for bright targets in Cycle 1
• Visibility, position angles, and spectral overlaps
• Enter values into APT
NIRCam grism time series options (APT)

- Can choose from 64, 128, 256, & 2048 x 2048 subarrays
- 1 or 4 outputs (4 for very bright stars)
- Simultaneous short wavelength imaging with weak lens to spread the light over many pixels is possible
- No dithering
- Flexible detector MULTIACCUM exposure & readout parameters
Select Subarray Size

mag > bright limit + 0.75?

Yes → 2048 x 64
Yes → 2048 x 128
Yes → 2048 x 256

No → 4 Outputs
No → 1 or 4 Outputs
No → 1 or 4 Outputs

Want > 128 subarray?

Yes → 2048 x 128
Yes → 2048 x 256

No → 1 or 4 Outputs

Is mag > bright limit + 1.5?

Yes

No
Select Detector Readout Parameters

1. **RAPID exceeds data limit?**
 - **Y**
 - **N**
 - **RAPID Ngroups > limit?**
 - **Y**
 - **BRIGHT1 > limits?**
 - **Y**
 - **BRIGHT1**
 - **N**
 - **BRIGHT2 > limits?**
 - **Y**
 - **BRIGHT2**
 - **N**
 - **BRIGHT1**
 - **N**
 - **RAPID**
 - **N**
 - **BRIGHT1**
 - **N**
 - **RAPID**

Set #groups from:
- host star brightness
- mode saturation limit
- subarray size
- # of outputs

Set # Ints to fill dwell time
Set SW Filter: Simultaneous $\lambda < 2.4 \, \mu m$ Imaging

Currently Available SW Filters:
- CLEAR + WLP4
- WLP8 + 182M
- WLP8 + 210M
- WLP8 + 187N
- WLP8 + 212N
• In Cycle 1, grism time series target acquisition is done with F335M filter, 32 x 32 subarray, and Ngroups ≥ 3
 – Saturation limit is K = 7.0 mag
• **Stars with K < 7.0 may require offset target acquisition**
 – Offset from nearby fainter star with known coordinates
• Using a narrow-band acquisition filter would allow acquiring on K < ~4.5 mag stars (likely Cycle 2 and later)
Check spectral overlap of nearby objects

We are working on an automated tool for this (NIRCam + MIRI LRS)
NIRCam uses the JWST time-series data pipeline

- Users can download & re-run the pipeline with different options, additions, or removals
Future Possible Simultaneous 1 – 2 μm Spectra

- Dispersed Hartmann Sensor (DHS) elements in the SW channel of NIRCam provide 1 – 2 μm spectra using 10 sub-apertures of the JWST pupil, potentially allowing simultaneous spectra of bright stars during LW grism observations.

- This is not an approved science mode for Cycle 1; it may be approved for later cycles. There may be limitations on spectra.

See Schlawin+ (2017) PASP
The End