An Open Avionics and Software Architecture to Support Future NASA Exploration Missions

IEEE MetroCon 2017
October 26, 2017

Adam Schlesinger, Deputy Manager, AES Avionics & Software
NASA-Johnson Space Center (JSC), Houston, TX
NASA’s Exploration Roadmap

EXPANDING HUMAN PRESENCE IN PARTNERSHIP
CREATING ECONOMIC OPPORTUNITIES, ADVANCING TECHNOLOGIES, AND ENABLING DISCOVERY

Phase 0
Continue research and testing on ISS to solve exploration challenges. Evaluate potential for lunar resources. Develop standards.

Phase 1

Phase 2
Complete Deep Space Transport and conduct yearlong Mars simulation mission.

After 2030
Leaving the Earth-Moon System and Reaching Mars Orbit

Now
Using the International Space Station

2020s
Operating in the Lunar Vicinity (proving ground)
Phase 1 Plan
Establishing deep-space leadership and preparing for Deep Space Transport development

<table>
<thead>
<tr>
<th>Deep Space Gateway Buildup</th>
<th>2018 - 2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM-1</td>
<td>Europa Clipper</td>
<td>EM-2</td>
</tr>
<tr>
<td>SLS Block 1 Cargo
Crew: 0</td>
<td>SLS Block 1B Cargo
Europa Clipper (subject to approval)</td>
<td>SLS Block 1B
Crew: 4
CMP Capability: 8-9T</td>
</tr>
</tbody>
</table>

Known Parameters:
- Gateway to architecture supports Phase 2 and beyond activities
- International and U.S. commercial development of elements and systems
- Gateway will translate uncrewed between cislunar orbits
- Ability to support science objectives in cislunar space

Open Opportunities:
- Order of logistics flights and logistics providers
- Use of logistics modules for available volume
- Ability to support lunar surface missions

Gateway (blue) Configuration
(Orion in grey)
(PLANNING REFERENCE) Phase 2 and Phase 3
Looking ahead to the shakedown cruise and the first crewed missions to Mars

<table>
<thead>
<tr>
<th>Transport Delivery</th>
<th>Transport Shakedown</th>
<th>Mars Transit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM-6</td>
<td>EM-8</td>
<td>EM-10</td>
</tr>
<tr>
<td>EM-7</td>
<td>EM-9</td>
<td>EM-11</td>
</tr>
<tr>
<td>2027</td>
<td>2028 / 2029</td>
<td>2030+</td>
</tr>
<tr>
<td>SLS Block 1B Cargo</td>
<td>SLS Block 1B Cargo</td>
<td>SLS Block 2</td>
</tr>
<tr>
<td>P/L Capability: 41t</td>
<td>P/L Capability: 41t</td>
<td>P/L Capability: 45t</td>
</tr>
<tr>
<td>Logistics</td>
<td>Logistics & Refueling</td>
<td>Logistics & Refueling</td>
</tr>
<tr>
<td>2027</td>
<td>2028 / 2029</td>
<td>2030+</td>
</tr>
<tr>
<td>SLS Block 1B Cargo</td>
<td>SLS Block 1B Cargo</td>
<td>SLS Block 2</td>
</tr>
<tr>
<td>Crew: 4</td>
<td>Crew: 4</td>
<td>Crew: 4</td>
</tr>
<tr>
<td>CMP Capability: 10t</td>
<td>CMP Capability: 13t</td>
<td>CMP Capability: 13t</td>
</tr>
<tr>
<td>2027</td>
<td>2028 / 2029</td>
<td>2030+</td>
</tr>
<tr>
<td>SLS Block 1B Cargo</td>
<td>SLS Block 1B Cargo</td>
<td>SLS Block 2</td>
</tr>
<tr>
<td>P/L Capability: 41t</td>
<td>P/L Capability: 41t</td>
<td>P/L Capability: 45t</td>
</tr>
<tr>
<td>Logistics</td>
<td>Logistics & Refueling</td>
<td>Logistics & Refueling</td>
</tr>
</tbody>
</table>

Known Parameters:
- DST launch on one SLS cargo flight
- DST shakedown cruise by 2029
- DST supported by a mix of logistics flights for both shakedown and transit
- Ability to support science objectives in cislunar space

Open Opportunities:
- Order of logistics flights and logistics providers
- Shakedown cruise vehicle configuration and destination/s
- Ability to support lunar surface missions

Reusable Deep Space Transport supports repeated crewed missions to the Mars vicinity
Advanced Exploration Systems (AES) Division

- NASA's Advanced Exploration Systems (AES) division is pioneering innovative approaches and public-private partnerships to rapidly develop prototype systems, advance key capabilities, and validate operational concepts for future human missions beyond Earth orbit.

- AES activities are related to crew mobility, habitation, vehicle systems, robotic precursors, and foundational systems for deep space.

- AES infuses new technologies developed by the Space Technology Mission Directorate and partners with the Science Mission Directorate to address Strategic Knowledge Gaps for multiple destinations.

- AES is leading NASA’s Deep-Space Gateway & Transport (DSG&T) Efforts.
AES Avionics & Software (A&S) Project

• AES Avionics & Software (A&S) Project Goal:
 – Define and exercise an avionics architecture that is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions

• A&S Drivers:
 – Technology Transparency
 • The underlying hardware should not have any impact on an application either during development or execution
 • Code reuse and portability
 – Reliability and Maintenance
 • Operate in the presence of failures so that Maintenance Free Operating Periods (MFOPS) can be achieved
 • Provide autonomous operations
 • Minimal number of unique spares
 – Incremental Update & Certification - Designed for Growth and Change
 • Applications can be inserted/ altered with minimum impact on other systems and on the supporting safety case
 • Flexible scheduling to meet the deadlines of all the applications for each viable configuration and when system is upgraded
AES Avionics & Software (A&S) Project

• A&S Focus Areas and Objectives:
 – **Command & Data Handling (C&DH)** - Define a reliable, high-performance & modular C&DH architecture and build HW catalog
 – **Software** - Provide a reusable software architecture and tools suitable for human-rated missions
 – **Human Interfaces** - Identify, integrate & test human interface technologies that are scalable, sustainable, and evolvable to support future exploration
 – **Communication and Wireless Systems** - Enable interoperable, wireless & networked communication for inter/intra-vehicle systems
 – **Systems Engineering and Integration (SE&I)** - Model, build & test flexible and robust integrated vehicle systems

• A&S Benefits:
 – Results in an open architecture that allows use of hardware from multiple vendors
 – Enables use of evolving (near-launch) technology
 – Ability to upgrade capabilities and infuse new technologies with cost effective validation
Avionics & Software Architecture

Best-Effort (IEEE 802.3) (Crew interfaces and science)
- Classical LANs can run isolated from or overlapping TT/RC network.
- COTS hardware easily upgraded.

Time-Triggered (SAE AS6802) (Vehicle Command and Control)
- All messaging is into/out of C&DH system.
- Periodic and generally low bandwidth.

Effectors
- Heaters
- Pumps
- Valves
- Motors

All messaging is into/out of C&DH system.
- Periodic and generally low bandwidth.

< 5 Mbit/s
< 10 Mbit/s
< 5 Mbit/s
100 Mbit/s

Rate-Constrained (A664-p7) (Asynchronous critical systems)
- Traffic shaping and policing ensures successful message delivery.
- Provides event-driven communication between synchronization domains.

Onboard Gateway
- Distributed Processing
 - RIU/DAU
 - Star tracker
 - Propulsion
 - ECLSS

Rate-constrained traffic can be used by subsystems traditionally limited to P2P comm.

Command/Telemetry Processing

DTN Storage/Processing

Transponders (SDR)
S-band, Ka-band, X-band, Proximity (UHF)

Voting at Interface

High Speed Serial (P2P, minimal networking)
- Provides >1Gbit/s point-to-point or (possibly) networked messaging.
- Mostly related to off-board communication.

IEEE 802.11

Cameras, Audio, and Portable Devices

Wireless Devices

Servers

Real-time Audio/video streaming

IEEE 802.3

Classical Ethernet LAN

Classical LANs can run isolated from or overlapping TT/RC network.

Onboard Displays

Sensor Data (High rate)
- Optical navigation
- Autonomous systems

Sensor Data (Low rate)
- Star tracker
- IMU/SIGI
- Sun sensor
- Thrusters
- Temperature
- Humidity
- Oxygen, CO₂
- Flow rate
- Voltage

Data Recorders

Docking Interface

Data Recorders

Equipment unique cabling

[1] Rakow, Glenn Spacecraft Crew-Vehicle Avionics Networks and Communication Flow
Blueprint of the Architecture: Distributed Integrated Modular Avionics (D-IMA)

<table>
<thead>
<tr>
<th>Description</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed</td>
<td>- Resources (both hardware and software) are physically distributed</td>
</tr>
<tr>
<td></td>
<td>• Reduce harness mass</td>
</tr>
<tr>
<td></td>
<td>• Provide for local control of local functions</td>
</tr>
<tr>
<td></td>
<td>• Lowers flight computer load</td>
</tr>
<tr>
<td>Integrated</td>
<td>- Multiple functions of different criticalities running on separate, high integrity, partitions</td>
</tr>
<tr>
<td></td>
<td>• Re-locatable functions not limited to a single line replaceable unit (LRU) boundary</td>
</tr>
<tr>
<td>Modular</td>
<td>- Standard interfaces/Virtual Backplane</td>
</tr>
<tr>
<td></td>
<td>• Provides for composability</td>
</tr>
<tr>
<td></td>
<td>• Allows for hardware reuse</td>
</tr>
<tr>
<td></td>
<td>• Allows for software reuse</td>
</tr>
<tr>
<td>Avionics</td>
<td>- Board level building blocks used to assemble boxes into systems</td>
</tr>
<tr>
<td></td>
<td>• Allows for multiple vendor hardware components</td>
</tr>
</tbody>
</table>

Diagram:
- **Processors**
- **Network**
- **D-IMA Smart System**
 - Controller Type a
 - Controller Type b
 - TTE (NIC)
 - Processor
 - Bus I/F
 - Power
 - Remote Interface Unit
- **IMA Networked System**
 - Common Avionics Enabler
 - Sensor & Effectors α
 - Sensor & Effectors β
Brain of the Architecture: NASA’s Core Flight Software (CFS)

- Core Flight Software (CFS) is a NASA-developed asset for spacecraft flight software reuse that is available as open-source:
 - http://sourceforge.net/projects/coreflightexec/

- Productized real-time flight software developed over several years by Goddard Space Flight Center to serve as reusable software framework basis for spacecraft missions, test missions, real-time systems

- AES has since advanced the product line, including achieving human-rating, as a reusable software solution for future exploration missions

- CFS provides a published service layer (cFE) and an Operating System Abstraction Layer (OSAL) for common services to run on multiple platforms and with several operating systems
 - Pub/Sub message bus, time services, events, tables, file, task execution

- CFS provides common reusable spacecraft functions as open-source or government-purpose applications
 - Scheduler, commanding, telemetry, communication, data recording, limits, system health, sequences
CFS Architecture

Core Flight Software Framework-Architectural Layers

- Mission Specific CFS Apps
- CFS Reusable Apps
- cFE (core Flight Executive) Services API
- Operating System Abstraction Layer (OSAL) API
- Platform Specific Package (PSP)

Notional CFS Application Software Architecture

- Inter-task Message Router (Software Bus – Publish/Subscribe)
 - Scheduler
 - Telemetry Output
 - Command Ingest
 - CFDP
 - File Manager
 - Mass Storage Device
 - Data Storage
 - Limit Checker
 - Health & Safety Manager

- Software Bus
- Time Services
- Executive Services
- Event Services
- Table Services

- Mission Specific Apps - Components
- Hardware Specific Device I/O Apps - Components

- Core Services
- Example CFS Reuse Apps
- Mission Specific Apps

- CFS also provides a mechanism to link distributed CFS instances called Software Bus Network (SBN), including an SBN library (SBN-lib) for non-CFS applications that need access to software bus data
Some CFS Supported Platforms: Non-Exhaustive

- CFS has been ported to work on many processors…
 - BAE RAD750
 - LEON3
 - Space Micro Proton 400K
 - Raspberry Pi
 - AITECH SP0-100
 - Intel x86
 - Maxwell SCS750

- …and with many operating systems, both real- and non-real-time
Backbone of the Architecture: Time-Triggered Ethernet

• Time-Triggered Ethernet (TTE) is compatible with, can coexist with on the same physical media, and expands classical Ethernet with services to meet time-critical or deterministic conditions, supporting three message types:

 • Time-triggered (SAE AS6802): Sent over the network at predefined times and take precedence over all other message types
 – Occurrence, delay and precision of messages are predefined and guaranteed

 • Rate-constrained (ARINC 664 p7): Used for applications with less stringent determinism and real-time requirements
 – Bandwidth is predefined and guaranteed for each application and delays/jitter have defined limits

 • Best-effort (IEEE 802.3): Follow classical Ethernet policy
 – Use the remaining network bandwidth and have lower priority than TT or RC messages

• TTE Standards exist or are in-work and NASA supports development of an open TTE Standard
 – SAE AS6802 – Time-Triggered Ethernet
 – European Cooperation for Space Standardization (ECSS) ECSS-E-ST-50-16 – Time-Triggered Ethernet
 – Consultative Committee for Space Data Systems (CCSDS) Sub-Network Services WG
Reliability and Robustness: Triplex Voting Architecture

- Developed a 1-Byzantine Fault tolerant voting architecture using TTE and CFS using current COTS technologies
 - Three Onboard Computers (OBC)
 - Three High-Integrity (command/monitor) TTE Switches
 - Remote Interface Units (RIU)

- Architecture is scalable through additional network planes, high-integrity devices, etc.

- Approach uses TTE for data distribution and sync and built CFS apps to do so

- Benefits of the voting architecture:
 - Enables the use of COTS single board computers
 - Eliminates need for separate cross-channel data link
 - Eliminates need for separate timing hardware

The Crew Element: Human Interface Architecture

- Developed a human interface architecture to reduce barriers between the crew and the vehicle

- Core component is the Human Interface Management Computer (HIMaC) that acts as a Display Server, Telemetry/Command Exchange Server and Audio/Video Server
 - HIMaC is tied to flight software bus network and supports different traffic classes

- Architecture consists of open interface standards to provide flexible and reconfigurable peripherals
 - Displays, Controls, Wearables, Audio, Video, Virtual/Augmented Reality

- Provides a robust approach to data security

- Designed to be scalable, sustainable, and evolvable enabling support for system build up, upgrades and extensions
The communication links that the architecture is designed to support include:

- DSG ↔ Earth
- DSG ↔ Lunar Surface
- DSG ↔ Visiting Vehicle
- DSG ↔ Proximity/Wireless Communications (i.e. Extra-Vehicular Activity (EVA))

Architecture supports several standard wireless standards and technologies for internal spacecraft and proximity communications:

- IEEE 802.11 Family
- 5G Technology (LTE)
- Wireless Sensor Networks
- Radio Frequency Identification (RFID) for both logistics and sensing

Candidate standards and technologies have been identified, are still being evaluated, and have not been finalized:

- Optical communication is also being looked at for DSG

Will leverage the Interagency Operations Advisory Group (IOAG) Service Catalog and Consultative Committee for Space Data Systems (CCSDS) Standards

Internetworking capabilities are a requirement, and must operate in the presence of time delays and outages:

- Delay/Disruption Tolerant Networking (DTN) is the solution
Delay/Disruption Tolerant Networking (DTN) is an AES developed protocol suite that extends the terrestrial Internet capabilities into highly stressed data communication environments where the conventional Internet does not work.

- These environments are typically subject to frequent disruptions, unidirectional/asymmetric links, long delays and high error rates.

DTN is being standardized by the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF) DTN Working Groups.

NASA’s Interplanetary Overlay Network (ION) DTN implementation is open-source software:

- https://sourceforge.net/projects/ion-dtn/files/

Some of the benefits of DTN include improved operations and situational awareness, interoperability and reuse, space link efficiency, utilization and robustness, security and quality-of-service.

DTN User Applications
(e.g. File Transfer, Messaging, Science Data)

<table>
<thead>
<tr>
<th>Quality of Service (QoS)</th>
<th>Schedule-Aware Bundle Routing (SABR)</th>
<th>Security/Key Management</th>
<th>Asynchronous Management Protocol (AMP)</th>
<th>Bundle Protocol Security (BPxSec)</th>
<th>Bundle Protocol (BP)</th>
<th>Licklider Transmission Protocol (LTP) or other Convergence Layers</th>
</tr>
</thead>
</table>

Underlying Transport Mechanisms

- Implementation Exists; Standard Exists
- Implementation Exists; Standard In-Work
- Implementation Exists; Standard Planned
- Not Part of DTN Suite
Putting it All Together: Systems Engineering and Integration (SE&I)

- Determined the necessary avionics functions for architecture, allocated the functions to abstract systems and implemented the systems to perform the functions.

- Modeled the avionics and software architecture using Model-Based Systems Engineering (MBSE) tools using the Systems Modelling Language (SysML) throughout life-cycle.

- Led the migration of other spacecraft subsystems to run CFS applications on path-to-flight processors and connect to the architecture:
 - Power, Environmental Control and Life Support System (ECLSS), Vehicle Autonomy applications, etc.

- Conceptualized mission scenarios to exercise/stress the architecture through both simulation and testing.
An Enabling Architecture: Supporting Future Autonomous Systems

• As human exploration moves farther out into space, the need for autonomous systems significantly increases
 – Many functions of the current Mission Control Center (MCC) will need to move onto the spacecraft

• AES, STMD and others within NASA are researching various autonomy applications that could be used as part of the Deep-Space Gateway and Transport efforts

• NASA is also closely tracking commercial developments that could support autonomous systems

• The developed avionics and software architecture will serve as a platform to exercise autonomy applications and concepts
 – Exercise onboard autonomous Integrated Vehicle Health Management (IVHM) applications
 – Explore distributed and centralized autonomy concepts
 – Build crew and ground operator familiarity and comfort with autonomy applications
 – Provide reliable command/control capabilities for spacecraft subsystems
 – Provide additional processing/storage for less-capable systems
 – Monitor subsystems and serve as an operations advisor

• Open architecture will also serve as a technology development platform to help establish partnerships and collaborations to further enhance architecture
 – Support Academia, International Partner or commercial technologies
Avionics & Software Architecture

Best-Effort (IEEE 802.3) (Crew interfaces and science)
- Classical LANs can run isolated from or overlapping TT/RC network.
- COTS hardware easily upgraded.

Time-Triggered (SAE AS6802) (Vehicle Command and Control)
- All messaging is into/out of C&DH system.
- Periodic and generally low bandwidth.

Rate-Constrained (A664-p7) (Asynchronous critical systems)
- Traffic shaping and policing ensures successful message delivery.
- Provides event-driven communication between synchronization domains.

High Speed Serial (P2P, minimal networking)
- Provides >1Gbit/s point-to-point or (possibly) networked messaging.
- Mostly related to off-board communication.

[1] Rakow, Glenn Spacecraft Crew-Vehicle Avionics Networks and Communication Flow
Key Takeaways

- The AES A&S project has developed an Avionics & Software architecture that is:
 - Open-source, with standard capabilities and interfaces
 - Highly reliable with 1-Byzantine fault tolerance
 - Scalable and customizable to support future exploration missions such as the Deep Space Gateway and Transport
 - Built on a foundation of NASA’s Core Flight Software (CFS) and Time-Triggered Ethernet (TTE)
 - Realizable with currently available COTS technology and supports multi-vendor hardware
 - Fully modeled in SysML, implemented and tested in relevant environments
 - Designed to support various autonomy technologies that will be needed for deep-space human exploration