Prolonged 500 °C Operation of 100+ Transistor Silicon Carbide Integrated Circuits

David J. Spry1, Philip G. Neudeck1, Dorothy Lukco2, Liangyu Chen3, Michael J. Krasowski1, Norman F. Prokop1, Carl W. Chang2, Glenn M. Beheim1

1NASA Glenn Research Center
2Vantage Partners LLC
3Ohio Aerospace Institute
SiC Electronics Benefits to NASA Missions

Intelligent Propulsion Systems

Venus Exploration

LLISSE = Long-Life In-Situ Solar System Explorer

Hybrid Electric & Turbo Electric Aircraft

NASA GRC’s internal research effort has been focused on durable/stable integrated circuit operation at 500 °C for > 1000 hrs.

9.4 Mpa = 92.7X Earth pressure + 460 °C + chemical composition found at the surface of Venus (CO₂, N₂, SO₂, H₂O, CO, OCS, HCl, HF, and H₂S)

Recent Advances

NASA SiC JFET IC operation at T > 900 °C

NASA SiC JFET IC operated directly immersed in Venus surface conditions (no package) for 3 weeks (did not fail)
N-channel JFET design1,2 “Version 10.1”

- Normally-on 4H-SiC JFET (fabricated at NASA Glenn)
- Resistors made with same epi as channel → matched T dependence
- Negative threshold voltage V_T → negative signal voltages (0 to -10V)
- 0 V = Binary 1 (high) \hspace{1cm} -10 V = Binary 0 (low)

1 M. J. Krasowski, US Patent 7,688,117 (2010).
JFET IC Wafer 10.1 vs past work\(^{1,2}\)

- **Aluminum** Field Stop Implant to impede parasitic field MOSFETs.
- Heavily-implanted SiC contact regions were formed using **phosphorus** implant profile with slightly lower energy & dose.
- Contact was made using 50 nm sputtered **titanium** layer.

High-T packaging1,2 (32 pins)

- Package durability and leakage characterized.

4X4 Random Access Memory (RAM) Demonstration Chip

- 3mm x 3mm 4H-SiC JFET chip shown prior to packaging.
- 195 JFETs.
- 6-Transistor static RAM cell approach.
- Includes address decoders, read/write bitline drive with sense amplifiers, output buffers.
\[\div2/\div4 \text{ Clock Demonstration Chip} \]

- 3mm x 3mm 4H-SiC JFET chip prior to packaging.
- 175 JFETs
- 21-Stage ring oscillator provides base frequency clock signal
- SELECT data line:
 - High (0 V) \(\rightarrow \div4 \) output
 - Low (-10 V) \(\rightarrow \div2 \) output
- Includes two D-type flip flops governed by select logic
 - 3rd flip flop is inactive due to layout error.
- Optional modulation of high-f ring oscillator signal
Wafer 10.1 IC Functional Yield at 25 °C

Table I. 25 °C Probe Test Yield for 100+ JFET SiC ICs

<table>
<thead>
<tr>
<th>Demonstration IC</th>
<th>IC JFET Count</th>
<th># Good/# Tested</th>
<th>% Yield r ≤ 25 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-bit RAM</td>
<td>195</td>
<td>19/27</td>
<td>70%</td>
</tr>
<tr>
<td>÷ 2/÷ 4 Clock</td>
<td>175</td>
<td>19/26</td>
<td>73%</td>
</tr>
</tbody>
</table>

• Probe-test measurements at 25 °C prior to wafer dicing and circuit packaging.

• JFET threshold voltage V_T on depends on distance from the center of the wafer r, due to as-purchased wafer epilayer variation (see Ref. 1).

• Table I is for $r < 25$mm (on 38 mm radius wafer), the wafer region where V_T falls within circuit design specifications of $|V_T| < 10$ V.

Wafer 10.1 500 °C Packaged IC Tests

Table II. Summary of 500 °C Packaged IC Tests

<table>
<thead>
<tr>
<th>Packaged IC Sample</th>
<th>500 °C Test Hours</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-bit RAM #1</td>
<td>1525 h</td>
<td>Suspended</td>
</tr>
<tr>
<td>16-bit RAM #2</td>
<td>5040 h</td>
<td>Running</td>
</tr>
<tr>
<td>÷2/÷4 Clock #1</td>
<td>470 h</td>
<td>Failed</td>
</tr>
<tr>
<td>÷2/÷4 Clock #2</td>
<td>5200 h</td>
<td>Running</td>
</tr>
<tr>
<td>÷2/÷4 Clock #3A</td>
<td>4377 h</td>
<td>Running</td>
</tr>
<tr>
<td>÷2/÷4 Clock #3B</td>
<td>4377 h</td>
<td>Running</td>
</tr>
<tr>
<td>÷2/÷4 Clock #3C</td>
<td>2090 h</td>
<td>Failed</td>
</tr>
</tbody>
</table>

RAM#1 was tested as 12-bit due to damage/failure of one row/word line during packaging.
Clock chips 3A, 3B, 3C reside in same package.
• Measured 16-bit RAM waveforms showing read and write functionality of all bits at 5040 hours of a 500 °C oven test.

Prolonged 500 °C Operation of 100+ Transistor Silicon Carbide Integrated Circuits
• Measured waveforms showing operation of \(\div 2 / \div 4 \) clock IC at 5200 hours of 500 °C oven testing.
Time evolution of ÷2/÷4 clock IC output voltages and frequency for 5 packaged chips subjected to prolonged 500 °C oven testing.

After initial burn-in, output characteristics change < 10%

3 of 5 chips remain functioning under 500 °C test.
(a) Crack typical of prolonged $T \geq 500$ °C testing in air (727 °C for this sample)

- In Earth environment, the crack allows the top surface of the TaSi$_2$ film to oxidize which exacerbates failure.

(b) Crack in IC sample tested in Venus surface condition.

- In Venus environment, the crack reaches the top of the TaSi$_2$ but does not propagate through the TaSi$_2$ and there is no observable evidence of TaSi$_2$ film oxidation.
Other samples exposed to Venus

- Platinum forms Platinum Sulfide.
 - 200nm thick films completely converted.
- Many morphologies found dependent on surrounding materials.
- Transition metals react to form sulfides.
- Trace amounts of HCl at 0.5 ppm and HF at 2.5 ppb that were found as reacted products in some samples.
- Temperature and/or pressure without including the complete chemistry is not a sufficient means of screening electronics for long-term operation in the Venusian surface environment.
- SiC, SiO\textsubscript{2}, \textit{Al}_2\textit{O}_3 remain stable.
Summary

• The complexity of 4H-SiC JFET IC’s proven durable for 1000’s of hours at 500 °C has been substantially increased from 24 transistors to 175+ transistors.

• Testing in high-fidelity reproduction of the Venus surface environment is necessary to continue electronics development and qualification testing building towards long-term Venus surface missions.
Acknowledgements

Funded by NASA Transformative Aeronautics Concepts Program

HX5 Sierra
• Kelley Moses
• Jose Gonzalez
• Michelle Mardenovich
• Ariana Miller

NASA Glenn Research Center
• Gary Hunter
• Robert Buttler
• Roger Meredith

Case Western Reserve University
• Amir Avishai
STARC-ABL: Single-aisle Turboelectric AiRCraft with Aft Boundary Layer propulsion
Typical Crack Propagation in Earth Air

- This sample was at 727 °C sample and a old (Version 9.2) design. Same kind of behavior when seen on some 500 °C samples.
- Cracks related to dicing, handling, design rules, and bonding.
- Various degrees of oxidation and peeling seen.
- Oxidation of TaSi2 surface can be many 10s of microns wide.
Crack at Venus Surface Conditions

• Only one crack seen on entire sample exposed to Venus.
• Found via optical microscope and then examined on SEM. Hard to find with FESEM.
• Very small (~ 75 nm) when viewed from the top.