NASA Risk and Safety Culture:
Minimizing the Risk of Catastrophe by Bringing Home the Lessons of Space

David Loyd
Johnson Space Center
Safety and Test Operations
October 11, 2017

NASA’s Losses in Space and on the Ground

—Failure is not an option we choose, but it is a reality we must face....

• The Impact of Human Factors on Mishaps
• NASA’s Risk Management Practices
• Human Error Integrated in Risk Assessment
—Acknowledging human frailty and modeling error probabilities.
• NASA’s Safety Culture —Minimizing the Risk Environment
—Reducing error by cultivating skill-based behavior.
—Bolstering trust throughout operations.
—Measuring safety culture growth.
“It can only be attributable to human error.”
-- HAL 9000 (2001: A Space Odyssey)
• NASA’s Losses in Space and on the Ground
 – Failure is not an option we choose, but it is a reality we must face.

• The Impact of Human Factors on Mishaps

• NASA’s Risk Management Practices

• Human Error Integrated in Risk Assessment
 – Acknowledging human frailty and modeling error probabilities.

• NASA’s Safety Culture – Minimizing the Risk Environment
 – Reducing error by cultivating skill-based behavior.
 – Bolstering trust throughout operations.
 – Measuring safety culture growth.
Recent Mission Mishaps

Columbia STS-107, February 1, 2003:
- 7 fatalities;
- $3 Billion vehicle loss;
- 2.5 year mission impact.

NOAA N-Prime, September 6, 2003:
- $135 Million vehicle damage;
- 5.5 year mission impact.

Genesis, September 8, 2004:
- Some sample retrieval materials lost.

Extra-Vehicular Activity (EVA) 23 Water Intrusion, July 16, 2013:
- Water collecting inside EMU helmet posed threat of drowning.

OCO, February 24, 2009:
- $280 Million vehicle loss;
- 5+ year mission impact.

Glory, March 4, 2011:
- $424 Million vehicle loss;
- ??? mission impact.
NASA's Losses

Recent Institutional Mishaps

JSC Chamber B Asphyxiation, July 28, 2010
- Shoulder injury due to asphyxiation and fall.

KSC Roofing Fatality, March 17, 2006
- Subcontractor died from head injuries suffered due to fall.

MSFC Freedom Star Tow-wire Injury, December 12, 2006
- Hospitalization due to internal injuries from impact with SRB tow-wire.

JSC Custodial Fatality, January 25, 2014
- Contract employee died 2 days after suffering a fall while collecting trash.

WFF CNC Injury, October 28, 2010
- Sub-dermal tissue damage due to impact from machine tool shrapnel.
What is the impact of Human Factors?

• Estimates range from 65-90% of catastrophic mishaps are due to human error.
 – NASA’s human factors-related mishaps causes are estimated at ~75%

• As much as we’d like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction...and are vulnerable to human frailty.

• Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk.
Some Risk Measurement Philosophy...

As much as we’d like to be able to predict error, the reality is that we must measure known performance characteristics to identify vulnerabilities, mitigate greatest risk, and enable prudent response to the next accident.
High Risk Occupations vs. Space Flight

Person-Fatality Risk Per Year

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Driver</td>
<td>1:3790</td>
</tr>
<tr>
<td>Timber Cutting and Logging</td>
<td>1:998</td>
</tr>
<tr>
<td>Airline Pilot</td>
<td>1:1270</td>
</tr>
<tr>
<td>Alaskan Commuter Pilot</td>
<td>1:336</td>
</tr>
<tr>
<td>Construction Worker</td>
<td>1:4190</td>
</tr>
<tr>
<td>Extraction – Mining, Oil and Gas</td>
<td>1:4420</td>
</tr>
<tr>
<td>Commercial Fishing</td>
<td>1:851</td>
</tr>
<tr>
<td>Alaskan Commercial Fishing</td>
<td>1:775</td>
</tr>
<tr>
<td>Northeast Multispecies Groundfish Fishing</td>
<td>1:166</td>
</tr>
<tr>
<td>Shuttle Astronaut</td>
<td>1:218</td>
</tr>
<tr>
<td>Mt. Everest Climber</td>
<td>1:70</td>
</tr>
</tbody>
</table>

Risk increases as “drill down” into smaller and smaller groups that drive the risk.

Miner risk does not include fatalities due to chronic illnesses like “black lung.”

Shuttle Astronaut risk is a very small group that has high risk.
Risk Informed Decision-Making (RIDM)* involves:

1. Identification of decision alternatives, recognizing opportunities where they arise, and considering a sufficient number and diversity of performance measures to constitute a comprehensive set for decision-making purposes.

2. Risk analysis of decision alternatives to support ranking.

3. Selection of a decision alternative informed by (not solely based on) risk analysis results.

* NPR 8000.4, Agency Risk Management Procedural Requirements
Risk Scorecard

JSC Risk Matrix

<table>
<thead>
<tr>
<th>Likelihood Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (Very Likely)</td>
<td>Expected to happen. Controls have minimal to no effect.</td>
</tr>
<tr>
<td>4 (Likely)</td>
<td>Likely to happen. Controls have significant limitations or uncertainties.</td>
</tr>
<tr>
<td>3 (Possible)</td>
<td>Could happen. Controls exist, with some limitations or uncertainties.</td>
</tr>
<tr>
<td>2 (Unlikely)</td>
<td>Not expected to happen. Controls have minor limitations or uncertainties.</td>
</tr>
<tr>
<td>1 (Highly Unlikely)</td>
<td>Extremely remote possibility that it will happen. Strong controls in place.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Mitigate; implement new processes, change requirements, or re-baseline</td>
</tr>
<tr>
<td>Moderate</td>
<td>Manage/consider alternative processes, or Accept</td>
</tr>
<tr>
<td>Low</td>
<td>Manage within normal processes; or Close</td>
</tr>
</tbody>
</table>

Consequences

<table>
<thead>
<tr>
<th>Subcategories</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>Minor injury; Minor OSHA violation</td>
<td>Short-term injury; Moderate OSHA violation</td>
<td>Long-term injury, impairment or incapacitation; Significant OSHA violation</td>
<td>Permanent injury or incapacitation; Major OSHA violation</td>
<td>Loss of life</td>
</tr>
<tr>
<td>System, Facility</td>
<td>Minor damage to asset</td>
<td>Moderate impact or degraded performance</td>
<td>Loss of non-critical asset</td>
<td>Damage to a critical asset</td>
<td>Loss of critical asset or emergency evacuation</td>
</tr>
<tr>
<td>Environment</td>
<td>Minor or non-reportable hazard or incident</td>
<td>Moderate hazard or reportable violation</td>
<td>Significant violation; Event requires immediate remediation</td>
<td>Major violation; Event causes temporary work stoppage</td>
<td>Catastrophic hazard</td>
</tr>
<tr>
<td>HSE (Health, Safety, Environment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>Minor impact to mission objectives or requirements</td>
<td>Incomplete compliance with a key mission objective</td>
<td>Noncompliance; Significant impact to mission</td>
<td>Noncompliance; Major impact on Center or Spaceflight mission</td>
<td>Failure to meet mission objectives</td>
</tr>
<tr>
<td>Center Capabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Minor impact or reduced effectiveness</td>
<td>Moderate impact or damage to infrastructure</td>
<td>Significant damage to infrastructure or reduced support</td>
<td>Mission delays or major impacts to Center operations</td>
<td>Extended loss of critical capabilities</td>
</tr>
<tr>
<td>Workforce</td>
<td>Minor impact to human capital</td>
<td>Moderate impact to human capital</td>
<td>Significant impact; Loss of critical skill</td>
<td>Major impact; Loss of skill set</td>
<td>Loss of Core Competency</td>
</tr>
<tr>
<td>Cost</td>
<td>Organizational or CMO Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2% Budget increase or <$1M CMO Threat</td>
<td>2-5% Budget increase or $1M-$5M CMO Threat</td>
<td>5-10% Budget increase or $5M-$10M CMO Threat</td>
<td>10-15% Budget increase or $10M-$60M CMO Threat</td>
<td>>15% Budget increase or >$60M CMO Threat;</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Minor milestone slip</td>
<td>Moderate milestone slip; Schedule margin available</td>
<td>Project milestone slip; No impact to a critical path</td>
<td>Major milestone slip; Impact to a critical path</td>
<td>Failure to meet critical milestones</td>
</tr>
<tr>
<td>October 11, 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HSE (Health, Safety, Environment)

CENTER Capabilities

TECHNICAL

Performance

Infrastructure

Workforce

Cost

Organizational or CMO Impact

Schedule
Institutional Risk Management

- Risk management forums are active for individual programs and the institution, but risk assessment criteria is consistent.
- Though program and institutional operating budgets are separate, risks are cross-communicated to identify potential impacts.

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Consequence</th>
<th>Org</th>
<th>TCR</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x 4</td>
<td>Test system maintenance</td>
<td>3</td>
<td>2</td>
<td>2 4 4 2</td>
</tr>
<tr>
<td>4 x 5</td>
<td>Mission essential resource limitations</td>
<td>## 4</td>
<td>4 5 2 1 4</td>
<td></td>
</tr>
<tr>
<td>4 x 3</td>
<td>Equipment End-of-Life</td>
<td>## 4</td>
<td>3 1 1 3</td>
<td></td>
</tr>
<tr>
<td>4 x 3</td>
<td>Building Refurbishments</td>
<td>## 4</td>
<td>3 3 1 1 2</td>
<td></td>
</tr>
<tr>
<td>5 x 5</td>
<td>Comm Systems End-of-Life</td>
<td>## 5</td>
<td>5 4 3 5 5</td>
<td></td>
</tr>
<tr>
<td>4 x 4</td>
<td>Building Maintenance shortfall</td>
<td>## 4</td>
<td>3 3 4 2 2</td>
<td></td>
</tr>
<tr>
<td>3 x 4</td>
<td>Asbestos abatement</td>
<td>## 3</td>
<td>2 3 2 4 3</td>
<td></td>
</tr>
<tr>
<td>4 x 4</td>
<td>Core Capability Threat</td>
<td>## 4</td>
<td>4 3 1 4</td>
<td></td>
</tr>
<tr>
<td>4 x 4</td>
<td>Water System Repairs/Upgrades</td>
<td>## 4</td>
<td>4 4 4 2 3</td>
<td></td>
</tr>
<tr>
<td>5 x 4</td>
<td>Research equipment failure threat</td>
<td>## 5</td>
<td>4 4 4</td>
<td></td>
</tr>
</tbody>
</table>

Legend
- ▲ Top Center Risk (TCR)
- △ Proposed Top Center Risk (Proposed TCR)
Process Measures for High-Risk Facilities

- Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities.
- NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities.
- NASA’s facility risk assessments integrate commercial loss control, OSHA Process Safety, API Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.

Examples of leading measure areas for high-risk facilities include:

- Maintenance and system integrity conditions;
- Operational qualifications;
- Challenges to safety systems and monitoring equipment;
- Communication and reporting system conditions;
- Accuracy of configuration management;
- Maintenance of operational procedures and emergency response plans.
Elements of assessment are not applicable to the associated facility mission.

HATS Closed: Conforms

Items identified as nonconforming were resolved.

* Non-conformance

Documentation does not exist to support the checklist requirements.

Partially conforms

Significant information is available, but does not meet the intent of risk control, or it is out of date or unavailable.

Conforms

Documentation is available with the required information to meet checklist intent.

* A nonconformance is tracked until closure. Partial nonconformances represent opportunities for risk reduction but are not followed up until the next scheduled assessment.
Probabilistic Risk Assessment (PRA)

- PRA integrates models based on systems engineering, probability and statistics, reliability and maintainability engineering, physical and biological sciences, decision theory, and expert opinion.
- PRA is needed when decisions need to be made that involve high stakes in a complex situation.
- The collection of risk scenarios allows the dominant risk factors to be identified, then modified or eliminated to improve the probability of success.

Representing the World via Bayesian Inference.
• In the PRA context, HRA is the assessment of the reliability and risk impact of the interactions of humans on a system or a function.

• For situations that involve a large number of human-system interactions, HRA becomes an important element of PRA to ensure a realistic assessment of the risk.

• In general, the Human Reliability Analysis process has a number of distinct steps, as shown below:

Adapted from NASA/SP-2011-3421, Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners
Performance Shaping Factors (PSF)

- PSFs impact human performance in a variety of ways, such as intelligence, expertise, emotion, harsh conditions, conflicting orders, etc.
- PSFs are incorporated into HRA error modeling, accommodating anticipated human interaction with critical tasking.
- We work to minimize the affects of PSFs, but our expectation of performance must acknowledge their potential impact to operations.
Minimizing Human Error
and Cultivating a Reduced Risk Environment

Rasmussen’s 3 Human Responses to Operator Information Processing

1. **Skill-based**: requires little or no cognitive effort.
2. **Rule-based**: driven by procedures or rules.
3. **Knowledge-based**: requires problem solving/decision making.

“The fewer rules a coach has, the fewer rules there are for players to break.”

John Madden

“Successful design is not the achievement of perfection but the minimization and accommodation of imperfection.”

Henry Petroski
Trust and Transparency Builds Common Risk Tolerance

Trust is what drives open reporting.
Transparent dialog promotes availability of information to inform more robust decision-making.
The result is uniform engagement to optimize success potential and accept a common risk tolerance (resilience).
This environment is the foundation of an effective safety culture.
• By advocating a pervasive Safety Culture, we can provide our workforce with:
 – Clear emphasis on continuous learning;
 – Encouragement to develop intuitive personal values;
 – Guidelines for decision-making behavior that focuses on long-term success;
 – Reinforcement to build trust by reporting and communicating concerns and ideas.

• Practicing an effective Safety Culture:
 – Builds Skill-based and Knowledge-based response mechanisms;
 – Reduces the emphasis on Rule-based response;
 – And breaks down barriers to Trust.
NASA’s Safety/Risk Culture Model

“An environment characterized by **safe attitudes and behaviors modeled by leaders** and **embraced by all** that fosters an atmosphere of **open communication**, **mutual trust**, **shared safety values and lessons**, and confidence that we will **balance challenges and risks** consistent with our core value of safety to successfully accomplish our mission.”

An effective safety culture is characterized by the following subcomponents:

- **Reporting** Culture - We report our concerns
- **Just** Culture - We have a sense of fairness
- **Flexible** Culture - We change to meet new demands
- **Learning** Culture - We learn from our successes and mistakes
- **Engaged** Culture - Everyone does his or her part

October 11, 2017
Apollo 1 – January 27, 1967

Reporting Culture – Procedures were subjected to last-minute changes that were not effectively tracked, recorded or communicated.

Just Culture – Poor morale and process discipline were evident in Command Module contractor performance prior to the incident.

Flexible Culture – Willingness to change course on design issues was weak in the presence of compelling important information.

Learning Culture – Test planning failed to appreciate the significant hazards of a 100% oxygen environment.

Engaged Culture – NASA provided insufficient surveillance over management functions.
Apollo 13 – April 13, 1970

Reporting – Incomplete and sometimes incorrect information was used in problem solving.

Just – Absence of information on this factor attests to the general neglect at the time of organizational behavior as a key factor in mishaps.

Flexible – Demonstrated ability to adapt quickly to an emergency although flexibility prior to the mishap is unclear.

Learning – While safeguards had been implemented following the Apollo 1 fire, key aspects of design, workmanship, and material use remained vulnerable to oxygen flammability.

Engaged – Solutions immediately following the oxygen tank explosion represent an engaged team.
Challenger – January 28, 1986

Reporting – Ineffective problem reporting requirements and practices.

Just – Stifled communication regarding O-ring susceptibility to cold conditions.

Flexible – Launch concerns were dismissed in the face of significant schedule pressure.

Learning – Trend analysis was inadequate as evidenced by identification of a number of burn-through events which occurred prior to STS-51L.

Engaged – NASA management lacked involvement in critical discussions.
Columbia – February 1, 2003

Reporting – Foam shedding was a known problem, yet foam impact data was still being analyzed at the time of the flight, and not considered a serious hazard.

Just – Some engineers were reluctant to raise concerns when faced with a return of an “in God we trust - all others bring data” attitude.

Flexible – Like the Challenger mishap, the Shuttle Program was experiencing schedule pressure challenges.

Learning – With “normalization of deviance,” foam had become classified as “in-family” and as a negligible risk to the orbiter.

Engaged – “Echos” of the Challenger mishap were evident.
Deepwater Horizon – April 20, 2010

Reporting – Procedures were subjected to last-minute distribution, last minute decision.

Just – Concerns of rig workers regarding test results were muted, not heeded or explored.

Flexible – All involved seemed prepared to exercise flexibility, but this may be indicative of insufficient process discipline.

Learning – Invalid confidence in new slurry, vents from Mud-Gas Separator (MGS) allowed gas to enter rig spaces, insufficient planning for contingencies.

Engaged – Incorrect reading of pressure tests, lack of recognition or timely control action related to kicks, diverted flow through MGS instead of overboard, reluctance to activate Blow-Out Preventer (BOP), reluctance to activate the Emergency Disconnect System, BOP testing and maintenance.
Measuring Safety Culture

2015 Safety Culture Survey Results

Comment Temperature Perspectives

HOT
“Eliminate the recalcitrant dinosaur dictators”

WARM
“Emphasis on purpose of safety measures, not just filling out a form or checking a box.”

TEPID
“Watch out for everyone”
“Communication”

COOL
“Keep doing what you are doing. We are constantly being reminded of Safety and its importance.”

October 11, 2017
The Path to Operational Excellence

• NASA, like the other hazardous industries, has suffered very catastrophic losses.
• Human error will likely never be completely eliminated as a factor in our failures.
• Acknowledging human frailty and the potential for failure bolsters our ability to manage risks and mitigate the worst consequences.
• Building an effective Safety Culture bolsters skill-based performance that minimizes risk and encourages operational excellence.
Backup Charts
Columbia STS-107, February 1, 2003:
7 fatalities;
$3 Billion vehicle loss;
2.5 year mission impact.

Kalpana Chawla
Rick D. Husband
Laurel B. Clark
Ilan Ramon
Michael P. Anderson
David M. Brown
William C. McCool
NOAA N-Prime, September 6, 2003:
- $135 Million vehicle damage;
- 5.5 year mission impact.
Genesis, September 8, 2004:
• Some sample retrieval materials lost.
Extra-Vehicular Activity (EVA) 23 Water Intrusion, July, 16, 2013:
• Water collecting inside EMU helmet posed threat of drowning.
Orbiting Carbon Observatory, February 24, 2009:
• $280 Million vehicle loss;
• 5+ year mission impact.

Glory, March 4, 2011:
• $424 Million vehicle loss;
• ??? mission impact.
JSC Chamber B Asphyxiation, July 28, 2010
- Shoulder injury due to asphyxiation and fall.