A Methane Lidar for Greenhouse Gas Measurements

Haris Riris (GSFC), Kenji Numata (GSFC), Stewart Wu (GSFC), Brayler Gonzalez (GSFC), Mike Rodriguez (Sigma Space), Molly Fahey (GSFC), Randy (Stephan) Kawa (GSFC), Stan Scott (GSFC), Anthony Yu (GSFC), Mark Stephen (GSFC), Bill Hasselbrack (Sigma Space), Jianping Mao (UMD)

ESTF June 2017
Pasadena, CA

Supported by:
NASA ESTO ACT and GSFC IRAD programs
Haris.Riris@nasa.gov
Outline

• Motivation - Why measure Methane?
• GSFC Measurement Approach
• Airborne Campaign Results
• Current Status
• Summary
Why measure Methane?

Source: Saunois et al. 2016
Global Methane Budget

Global Methane Budget

Source: http://www.globalcarbonatlas.org
GSFC CH₄ IPDA Lidar

- **Transmitter (Laser) technology**
 - Current (optimum) Wavelength for CH₄ Earth Detection: ~1.64-1.66 µm
 - Optical Parametric Oscillators (OPO) and Optical Parametric Amplifiers (OPA) are the “baseline” solutions for the transmitter.
 - Other options (Er:YAG and Er:YGG) now possible.

- **Receiver (Detector) Technology**
 - DRS e-APD

![Diagram of transmitter and receiver system](image)
Why use multiple wavelengths?

“Ideal” Instrument – has only random noise which can be averaged indefinitely. Two wavelengths can adequately sample the lineshape. Averaging always helps.

Real Instrument – has random and non-random noise which can NOT always be averaged. Two wavelengths can NOT adequately sample the lineshape or reduce biases.
CH₄ Airborne Instrument

Parameter	**Value (OPA/OPO)**
Center λ | 1650.9 nm
Number of λ | 20/5
Pulse Width | ~700/80 ns
Energy/pulse | ~25/250 µJ
Bin width | 4 ns
Divergence | ~150 µrad
Receiver diam. | 20 cm
Field of view | 300 µrad
Receiver BP | 0.8 nm (FWHM)
Averaging time | 1/16 s *
Detector Resp. | ~1-1.5 x 10⁹ V/W

*Data analysis uses 1s averages
Flight 1-OPA

Precision: 14.9 ppb or ~0.8%

Slope = 0.98; offset = -0.007; \(R^2 = 0.994 \).
Flight 2-OPA

Precision: 13.4 ppb or ~0.7%

Slope = 0.998; offset = -0.007; $R^2 = 0.990$.

1 sec Averaging

CH4 Mixing Ratio (ppb)

Time (UTC secs)

0 86000 88000 90000 92000 94000 96000 98000 100000

2000

1500

1000

500

0

Theory
- Picarro
- Lidar Mixing Ratio

DOD Lidar

DOD Theory

0.0 0.5 1.0 1.5 2.0 2.5

0.0 0.5 1.0 1.5

Linear Fit
Flight 3-OPO

Precision: 21.4 ppb or ~1.1%

Slope = 1.01; offset = -0.003; $R^2 = 0.999$.
Airborne Demonstration Summary

✓ **Best precision for:**
 ✓ OPA ~ 6-9 ppb; overall 12-15 ppb
 ✓ OPO ~ 10-12 ppb; overall: 21 ppb

✓ 20 wavelengths (OPA) produced better fits than 5 (OPO).

✓ OPO correction needed for cross talk.

✓ DRS e-ADP works very well at 1651 nm and is linear over a remarkable range of signals and gain settings.

✓ New airborne instrument designed.
Current summary of laser efforts

Transmitter Requirements:
High Energy (~600 µJ)
Narrow linewidth
Tunable (10-20 wavelengths)
Robust

Seed Laser
- DBR
- DFB
- Fast-tuned seed
- Seed Module (Tunable)

Pump Laser
- Solid State
- Fiber/Hybrid
- Pump
- Er:YGG/YAG
- OPO/OPA
- Final Design
• Why consider other transmitter options?
 – OPAs and OPOs are parametric conversion techniques. They are complex and difficult to implement and are sensitive to vibration.
 – Size/mass/cost of airborne/space instrument needs to be reduced.

• Potential for “simpler” and more efficient solid-state” laser transmitter technology.

• **Tuning and lasing at the right wavelength remain an issue.**
Er:YAG or Er:YGG?

- Spectroscopy (temperature dependence, line mixing, etc.)
- Interferences from H₂O vapor.
- Power and Tunability requirements for the laser.
New Transmitters: Compact OPO and Er:YAG/Er:YGG

![Experimental setup](image)

Graph:
- **1030nm pump energy [uJ]**
- **1651nm signal energy [uJ]**

- **Points:**
 - 160923: Advalue Photonics fiber laser + OPO
 - **Signal energy (unseeded)**

Equipment:
- **New compact OPO**
- **Nonlinear crystal (MgO:PPLN)**
- **Er:YAG/Er:YGG**
Existing OPO (Er:YAG/YGG) Tuning

- 5 wavelength system for injection seeding
 - 5 lasers
 - 4 OPLLs
 - 4 optical switches
 - 4 fast detectors
New tuning concepts and monolithic OPO

- Simplify the existing multilaser (wavelength) system
- Two proposed schemes:
 - Dual Sideband (DSB): requires Game Changing DBR deliverable
 - Single Sideband (SSB)
 - Both showing promising results
Both Er:YAG and Er:YGG require a wavelength-selecting element to lase at the right wavelength. Tuning becomes exceedingly complicated if we need to tune both the seed/cavity and the wavelength-selecting element.
New (improved) airborne sensor

- New transceiver uses Er:YAG/Er:YGG and new, compact OPO (AdValue pump laser)
- Two beams can be fired simultaneously (unlike the earlier version)
- Smaller than the earlier version but still too big to fly on small aircraft
- Vibration isolation maintained
Summary

✓ Demonstrated CH$_4$ airborne measurements using two lidar transmitters (OPA and OPO).

✓ Many different approaches and options for the laser transmitter are being investigated.

✓ Demonstrated power scaling with several options.

✓ Will incorporate Freedom Photonics seed laser deliverable and decide on final configuration.

✓ Looking for opportunities to fly!

• We would like to thank ESTO and GSFC IRAD for their support.
BACKUP
GSFC CH\textsubscript{4} Lidar with Integrated Path Differential Absorption Lidar (IPDA)
Setup for 5-wavelength OPO

Data acquisition system

Computer
Boxcar averagers

Pump laser
Nd:YAG

Trigger from FPGA

Cavity length ctrl

1064 nm (pump)

DFB-LD (Slave 1)

DFB-LD (Slave 2)

DFB-LD (Slave 3)

DFB-LD (Slave 4)

OPO cavity lock

Beat with slave lasers

Phase modulator

DFB-LD (Master)

CH4 cell (Vacuum tank)

1651 nm (Signal)

CH4 absorption

OPO cavity transmission

16FSR-10GHz

Reflective target

CH4

Telescope

Sig.

DET

IS

BE

DMs

DM

OPO

COL

SOA

Switch

Trigger from FPGA

Pump laser Nd:YAG

Cavity length ctrl

1064 nm (pump)
OPA Open-path measurement setup
CH$_4$ Laser Transmitter: OPO-OPA

- **Laser Transmitter:** OPO-OPA
- **Signal Line:** ~1650 nm
- **Seed(s)**: ~1650 nm
- **Pump**: Yb fiber, Nd:YAG or hybrid (1030-1064 nm)
- **OPO (cavity)**: DFB: $l_1(t)$, DBR: $l_1(i)$
- **Burst Pulse**: ~100 µs separation
- **Idler (IR)** & Residual Pump
- **Signal l_1 Methane Line ~1650 nm**

Diagram showing the laser transmitter setup with single and burst pulse outputs.