Tropical Processes Applications for CYGNSS

CYGNSS Applications Workshop
31 October to 2 November 2017
Monterey, CA
Motivation

The Cyclone Global Navigation Satellite System (CYGNSS) is focused primarily on observing extreme winds in the inner core of tropical cyclones

But ...
• Named storms will occur in view of CYGNSS constellation for only a small percentage of the time on orbit

And ...
• Rapid-update, all-weather sampling of wind speeds has many other applications in Tropical Meteorology

So ...
• Many potential tropical processes applications for CYGNSS were identified in previous Workshop – Let’s revisit some of these possibilities now that the mission is up
CYGNSS Value Added
CYGNSS Value Added - Filling in wind and even heat flux measurement gaps in rainy regions
CYGNSS Value Added

Sub-diurnal sampling due to 2-3 hour revisit cycle

Partially returns wind diurnal cycle resolution lost when RapidScat mission ended
CYGNSS Value Added - Mesoscale Convective Systems

- Fundamental building block of tropical convection, key source of marine hazards and impacts
- Near-surface inflow winds feed with moisture
- Outflows trigger additional convection
- Size and longevity consistent with CYGNSS capabilities (About 25-km spatial, 3-h temporal sampling)
- CYGNSS capable of observing gust fronts, etc.

Hoover et al. (2017; JTECH)
Sample Topics

• Madden-Julian Oscillation
• Monsoons
• Extratropical transitions and storms
• Atmospheric rivers, heavy rain, and flooding
MJO
Monitoring and Forecasting the Madden Julian Oscillation (MJO)

- Fundamental mode in the tropical atmosphere, 30-90 day cycle
- Upscale development of convection during active phase (convection-related convergence & outflows)
- Strong westerly winds common during suppressed phase
- Predictability issues near Maritime Continent, possibly related to interaction with diurnal cycle there
- CYGNSS thus has applications to improving monitoring and forecasting of MJO development and evolution

Madden and Julian (1972)
Zhang (2005)
MJO Onset and Westerly Wind Bursts (WWBs)

- CYGNSS capable of observing enhanced wind speeds in WWBs that are often associated with enhanced rainfall and convection
- Note spatial sparseness – tradeoff with increased temporal revisit, applications need to account for this

Hoover et al. (2017; JTECH)
MJO Applications Thoughts

• First Applications Workshop found MJO monitoring and forecasting to be a promising role for CYGNSS – Does not necessarily require reduced data latency for sub-seasonal forecasting

• R&D Needed - Model and data assimilation enhancements to preserve CYGNSS winds, CYGNSS reprocessing to improve spatial resolution near coasts, Investigation of viability of wind direction retrievals from CYGNSS

• Potential End Users - Global and regional forecasting agencies, Water resources agencies, Militaries, Agricultural industry
Monsoons
Monitoring and Forecasting Monsoons

• Scatterometer composites reveal seasonal variability of winds associated with Asian/Indian monsoons
• Resolution and coverage of CYGNSS can extend this to short time scales, where variability is driven by the diurnal cycle and the passage of individual convective weather systems
• These individual events (e.g., monsoon depressions) are the ones that impact society the most

Pan et al. (2001)
Monsoon Depressions

- Monsoon depressions often don’t reach tropical storm intensity, but are significant during active periods of the Indian Summer Monsoon, bringing needed rainfall.

- CYGNSS can provide additional wind observations in rainy, over-ocean quadrants of the depression, potentially providing forecast value.
Gulf of California Moisture Surges

- Important characteristic of North American Monsoon and major source of its impacts
- Can be initiated by strong convection or tropical cyclone
- Brings enhanced winds, moisture, and rainfall to the southwest USA
- Rapid process that can complete in < 1 day – CYGNSS can be useful here
Boreal Summer Intraseasonal Oscillation (BSISO) modulates Asian Monsoon, CYGNSS can provide additional sampling during heavily raining active phases - PISTON, CAMP²Ex
Monsoon Applications Thoughts

• CYGNSS monsoon applications can range from monitoring/forecasting individual events like depressions and Gulf surges (requiring latency < 1 day) to sub-seasonal active/break variability like the BSISO (allowing longer latency)

• R&D and End Users similar to MJO applications, but we should take advantage of near-term field campaigns like PISTON, CAMP²Ex, YMC, etc. which have significant data assimilation, modeling, and forecasting components as well as NASA support
ET Cyclones
Extratropical Cyclones (incl. ET transitions)

- ET cyclones often feature strong winds near cores and significant wind shifts across frontal zones
- ET transitions of TCs lead to unique hybrid storms that can retain severe weather potential
- Pre-launch simulations suggest CYGNSS will provide useful sampling of extratropical cyclones themselves, not just TC transitions
ET Applications Thoughts

- CYGNSS roles include filling scatterometer gaps and enhancing temporal continuity of wind obs
- ET transitions can be rapid, requiring low-latency data (< 1 day)
- Canada and Europe often affected by storms that underwent ET transition
- Potential applications will need to account for limited viewing region of CYGNSS
ARs, Flooding
Atmospheric Rivers

- Narrow (< 1000 km width), long (> 2000 km) plumes of water vapor connecting tropics to the mid-latitudes
- Often described using integrated water vapor (IWV) or Integrated vapor transport (IVT)
- Associated with significant precipitation/flooding events when they reach land
- CYGNSS able to view near-sfc winds even when heavily raining

Ralph et al. (2004; MWR)
- ARs and AR-like events often associated with TC landfall or passage (e.g., Joaquin & SC floods, 2015)
- Significant offshore mesoscale variability in winds associated with precip maxima

RapidScat + NEXRAD Reflectivity & Single-Doppler winds
Harvey – Extreme Rainfall Post-Landfall

- Preliminary CYGNSS L3 indicates increased winds offshore during event, potential mesoscale variability.
AR/Flooding Applications

Thoughts

- Impacts of improved forecasting could include better flood warnings and reservoir management
- ARs have complex 3D structures, surface only part of story
- Likely need low-latency CYGNSS data
- Applications will need to account for spatial sparseness of CYGNSS

Neiman et al. (2017; MWR)
Parting Thoughts

- Tropical process applications involving CYGNSS will work best when they leverage its more frequent updates and ability to sample in rainy regions.

- Possible CYGNSS may observe mesoscale variability masked from traditional wind methods.

- To fully take advantage, NWP must incorporate improved model physics, esp. momentum, heat, and moisture fluxes near ocean surface – how to get better T_a/Q_a obs?

- CYGNSS best when supplementing global observations of winds, humidity, pressure, temperature, precipitation, etc. Need to blend diverse wind products into a coherent 3D wind product.

- Low-latency data important, but some applications can do w/out