Lattice Boltzmann and Navier-Stokes Cartesian CFD Approaches for Airframe Noise Predictions

AIAA-2017-4404

Michael Barad, Joseph Kocheemoolayil, and Cetin Kiris
Computational Aerosciences Branch
NASA Ames Research Center

AIAA Aviation 2017
June 9, Denver, CO
Objective

✓ Increase predictive use of High-Fidelity Computational Aero-Acoustics (CAA) capabilities for NASA’s next generation aviation concepts.
 • CFD has been utilized substantially in analysis and design for steady-state problems (RANS).
 • Computational resources are extremely challenged for high-fidelity unsteady problems (e.g. unsteady loads, buffet boundary, jet and installation noise, fan noise, active flow control, airframe noise, etc)

✓ Need novel techniques for reducing the computational resources consumed by current high-fidelity CAA
 • Need routine acoustic analysis of aircraft components at full-scale Reynolds number from first principles
 • Need an order of magnitude reduction in wall time to solution!
LAVA Framework

Structured Cartesian AMR
- Navier-Stokes
- Lattice Boltzmann

Unstructured Arbitrary Polyhedral Navier-Stokes

Structured Curvilinear Navier-Stokes

Prismatic Layers

Far Field Acoustic Solver

Post-Processing Tools

Conjugate Heat Transfer

Actuator Disk Models

Aero-Structural

6 DOF Body Motion

Multi-Physics:
- Multi-Phase Combustion Chemistry
- Electro-Magnetics

Other Solvers & Frameworks

Other Development Efforts
- Higher order methods
- Curvilinear grid generation
- Wall modeling
- LES/DES/ILES Turbulence
- HEC (optimizations, accelerators, etc)

LAVA
Object Oriented Framework
C++ / Fortran with MPI Parallelism

Connected
- Existing
- Developing
Not Yet Connected
- Future
- Framework

Kiris at al. AST-2016 and AIAA-2014-0070
Computational Grid Paradigms

Structured Cartesian AMR
- Essentially no manual grid generation
- High efficiency Structured
- Adaptive Mesh Refinement (AMR)
- Low computational cost
- Reliable higher order methods
- Non-body fitted -> Resolution of boundary layers inefficient

Unstructured Arbitrary Polyhedral
- Partially automated grid generation
- Body fitted grids
- Grid quality can be challenging
- High computational cost
- Higher order methods yet to fully mature

Structured Curvilinear
- High quality body fitted grids
- Low computational cost
- Reliable higher order methods
- Grid generation largely manual and time consuming

Computational Grid Paradigms

<table>
<thead>
<tr>
<th>Paradigm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured Cartesian AMR</td>
<td>- Essentially no manual grid generation</td>
</tr>
<tr>
<td></td>
<td>- High efficiency Structured</td>
</tr>
<tr>
<td></td>
<td>- Adaptive Mesh Refinement (AMR)</td>
</tr>
<tr>
<td></td>
<td>- Low computational cost</td>
</tr>
<tr>
<td></td>
<td>- Reliable higher order methods</td>
</tr>
<tr>
<td></td>
<td>- Non-body fitted -> Resolution of boundary layers inefficient</td>
</tr>
<tr>
<td>Unstructured Arbitrary Polyhedral</td>
<td>- Partially automated grid generation</td>
</tr>
<tr>
<td></td>
<td>- Body fitted grids</td>
</tr>
<tr>
<td></td>
<td>- Grid quality can be challenging</td>
</tr>
<tr>
<td></td>
<td>- High computational cost</td>
</tr>
<tr>
<td></td>
<td>- Higher order methods yet to fully mature</td>
</tr>
<tr>
<td>Structured Curvilinear</td>
<td>- High quality body fitted grids</td>
</tr>
<tr>
<td></td>
<td>- Low computational cost</td>
</tr>
<tr>
<td></td>
<td>- Reliable higher order methods</td>
</tr>
<tr>
<td></td>
<td>- Grid generation largely manual and time consuming</td>
</tr>
</tbody>
</table>
LAVA Cartesian Navier-Stokes Methods

- 5th and 6th order WENO spatial discretization
- Higher-order immersed boundary method
- 4th order explicit Runge-Kutta time stepping
- Structured Adaptive Mesh Refinement: Locally tracking gradients in flow field with finer mesh (shocks, shear layers, etc). Using Chombo for AMR data structures.
- The LAVA team has had many successful uses of this methodology for mission critical NASA applications
- This approach has been a work-horse for quick turnaround projects with complex geometry and unsteady flow-fields
Recent LAVA Cartesian Navier-Stokes Successes: Launch Environment at NASA’s Kennedy Space Center

- Pressure and thermal analysis of plume impingement on main flame deflector, including conjugate heat transfer
- Containment analysis of plume in flame trench
- Numerous vehicles were analyzed on the pad, including SLS and commercial vehicles
- Drift analysis with plume impingement:
 - unsteady CFD with fixed vehicle
 - time-averaged SLS plume swept past pad and tower following 4000 trajectories
Passive particle visualization: colored by Mach number
Recent LAVA Cartesian Navier-Stokes Successes: Contra-Rotating Open Rotor

Passive particle visualizations: colored by seed location

Low Speed

High Speed
Recent LAVA Cartesian Navier-Stokes Successes: Launch Abort System for NASA’s Orion MPCV

Simulation of upcoming QM-1 LAS experiment
Recent LAVA Cartesian Navier-Stokes Successes: Landing Gear for AIAA BANCIII Workshop
Computational Requirements

- Space-time resolution requirements for acoustics problems are demanding.
- Resources used for Cartesian Navier-Stokes examples shown above:
 - Launch Environment: ~200 million cells, ~7 days of wall time (1000 cores)
 - Parachute: 200 million cells, 3 days of wall time (2000 cores)
 - Contra-Rotating Open Rotor: 360 million cells, 14 days (1400 cores)
 - Launch Abort System: 400 million cells, 28 days of wall time (2000 cores)
 - Landing Gear: 298 million cells, 20 days of wall time (3000 cores)
- LAVA Cartesian infrastructure has been re-factored into Navier-Stokes (NS) and Lattice Boltzmann Method (LBM).
 - 10-50 times speed-up can be achieved with LBM vs NS-WENO.
 - Existing LAVA Cartesian data structures and algorithms are utilized to reduce implementation effort.
LAVA LBM: Governing Equations

\[f_i(\vec{x} + c\vec{e}_i \Delta t, t + \Delta t) - f_i(\vec{x}, t) = \frac{1}{\tau} (f_i(\vec{x}, t) - f_i^{eq}(\vec{x}, t)) \]

Physics:
- Governs space time evolution of Density Distribution Functions
- Equilibrium distribution functions are truncated Maxwell-Boltzmann distributions
- Relaxation time related to kinematic viscosity
- Pressure related to density through the isothermal ideal gas law
- Lattice Boltzmann Equations (LBE) recover the Navier-Stokes equations in the low Mach number limit

Numerics:
- Extremely efficient ‘collide at nodes and stream along links’ discrete analog to the Boltzmann equation
- Particles bound to a regularly spaced lattice collide at nodes relaxing towards the local equilibrium (RHS)
- Post-collision distribution functions hop on to neighboring nodes along the lattice links (LHS) – Exact, dissipation-free advection from simple ‘copy’ operation
- Macroscopic quantities such as density and momentum are moments of the density distribution functions in the discrete velocity space
LAVA LBM: Embedded Geometry

- Boundary conditions in LBM are simple rules that relate ‘incoming’ populations to ‘outgoing’ populations for lattice links intercepted by an embedded surface.

- **Standard Bounce Back** (SBB): ‘Bounce-back’ rule realizes the no-slip boundary condition, but approximates the curved geometry by a series of small steps.

- **Linear Bounce Back** (LBB): Interpolated no-slip bounce-back rules (cf. Bouzidi et al. (POF, 01)) capture the curvature in geometry more accurately. Improved prediction of surface pressure fluctuations, critical for accurate acoustic predictions.

- **Halfway Bounce Back** (HBB) rule of A. C. Ladd (JFM, 94) generalized to be second-order accurate for arbitrary geometry (stationary and moving) and adapted for wall models using a generalized slip algorithm for realizing the appropriate momentum exchange.
LAVA LBM: Progress

IMPLEMENTATION TO DATE:

- **Lattices**: including D2Q9, D3Q15, D3Q19, D3Q27, D3Q39 …
- **Collision Models**:
 - Bhatnagar-Gross-Krook (BGK)
 - Multi-Relaxation Time (MRT)
 - Entropic and positivity preserving variants of BGK
 - Entropic Multi-Relaxation Time (EMRT)
 - Regularized BGK
- **LES Model**: Smagorinsky sub-grid-scale
- **Wall Models**: Tamm-Mott-Smith boundary condition, filter-based slip wall model, or traditional equilibrium wall stress model
- **Parallelization**:
 - Structured adaptive mesh refinement (SAMR) based LBM requires parallel ghost cell exchanges:
 - Fine-fine for communication within levels
 - Coarse-fine for communication across levels
 - Efficient parallel I/O
- **Multi-Resolution with Recursive Sub-Cycling**
- **Boundary Conditions**:
 - No-slip and slip bounce back walls
 - Accurate and robust curved walls
 - Inflow/outflow, and periodic
TURBULENT TAYLOR GREEN VORTEX BREAKDOWN TEST CASE:

- **Motivation:**
 - Simple low speed workshop case for testing high-order solvers
 - Illustrates ability of solver to simulate turbulent energy cascade
 - Periodic boundary conditions

- **Setup:**
 - Analytic initial condition
 - Mach = 0.1
 - Reynolds Number = 1600
 - Triply periodic flow in a box

- **Comparisons:**
 - LAVA’s Lattice Boltzmann (LB) solver captures the turbulent kinetic energy cascade from large scales to small scales extremely well.
 - Performance compared to LAVA’s Cartesian grid Navier-Stokes WENO solver showed a factor of 50 speedup.
LES OF FLOW PAST A CYLINDER

- Well documented prototypical turbulent separated flow
- Detailed comparisons made with measurements and benchmark simulations

- **Setup:** Reynolds number = 3900
- **Comparisons:**
 - LBM at 1M and 8M compares well with DNS @ 400M (M = million points)
 - 20x speedup even with embedded geometry:
 - Excellent comparison with benchmark datasets (PIV, LES, DNS). DNS reference used Re=3300.
 - More accurate than high-order upwind biased NS schemes for identical resolution
Cavity-Closed Nose Landing Gear

Grid Topology and Computational Setup

Mach = 0.166
Re = 66423 (D=D_{strut})
U_{ref} = 58.32 m/s
T_{ref} = 307.05 K
P_{ref} = 98605 Pa

LAVA Cartesian options:
- LBM uses EMRT with D3Q27
- NS uses WENO5 or WENO6 (as noted)

Setup follows the partially-dressed, cavity-closed nose landing gear (PDCC-NLG) noise problem from AIAA’s Benchmark problems for Airframe Noise Computations (BANC) series of workshops. (Problem 4. Nose landing gear)

https://info.aiaa.org/tac/ASG/FDTC/DG/BECAN_files_/BANCIII.htm
Cartesian Grid Resolution

9 Levels (56M)

1.95e-3m

10 Levels (91M)

12 Levels (1.6B)

4.88e-4m

11 Levels (260M)

9.77e-4m

Δx = 3.91e-3m
Grid Sensitivity: Vorticity @ 10000 [1/s]

9 Levels (56M)

10 Levels (91 M)

11 Levels (260M)

12 Levels (1.6B)
Grid Sensitivity: Vorticity Colored by Mach

- 9 Levels (56M)
- 10 Levels (91M)
- 11 Levels (260M)
- 12 Levels (1.6B)
Vorticity Colored by Mach Number

LBM @ 1.6 billion: expense = 7.9 normalized wall time units (relative to 260M calc)
Velocity Magnitude (Center-plane)

LBM @ 1.6 billion: expense = 7.9 normalized wall time units (relative to 260M calc)
Passive Particle Colored by Mach

LBM @ 1.6 billion
Grid Sensitivity - PSD

Channel 5: Upper Drag Link

Near Field PSD

- LB: 90 Million
- LB: 260 Million
- LB: 1.6 Billion
- EXP-UFAFF

Surface Pressure Spectra at Sensor Locations

BANClII Submissions
Grid Sensitivity - PSD

Channel 13: Outer Wheel
Grid Sensitivity - PSD

Channel 4: Upper Door

Near Field PSD

- LB: 90 Million
- LB: 260 Million
- LB: 1.6 Billion

EXP-UFAFF

Sensor 4

Surface Pressure Spectra at Sensor Locations

BANClIII Submissions
Channel 5: Upper Drag Link

Near Field PSD

- NS-WENO6: 298 Million
- NS-WENO5: 298 Million
- LB: 260 Million
- EXP-UFAFF
Channel 13: Outer Wheel

LBM vs NS - PSD

Near Field PSD

- NS-WENO6: 298 Million
- NS-WENO5: 298 Million
- LB: 260 Million
- EXP-UFAFF

Frequency (Hz)

PSD (psi^2/Hz)

10^{-13}
10^{-10}
10^{-7}
10^{-4}
Grid and Performance Statistics

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU Cores (type)</th>
<th>Cells (million)</th>
<th>Wall Days to 0.19 sec</th>
<th>Core Days to 0.19 sec</th>
<th>Relative SBU Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-GCM</td>
<td>3000 (ivy)</td>
<td>298</td>
<td>20.5</td>
<td>61352</td>
<td>12.1</td>
</tr>
<tr>
<td>NS-IIM</td>
<td>9600 (has)</td>
<td>222</td>
<td>6.1</td>
<td>58490</td>
<td>15.3</td>
</tr>
<tr>
<td>LBM</td>
<td>1400 (bro)</td>
<td>260</td>
<td>2.25</td>
<td>3156</td>
<td>1</td>
</tr>
</tbody>
</table>

- For a comparable mesh size, **LBM is 12-15 times faster (in CPU utilization) than Navier-Stokes** with immersed boundaries, and is equally accurate. “Apples-to-apples” comparison with the exact same mesh & CPU-type is ongoing. Note: LBM code is not yet optimized, and we output volume data every 50 steps!
- LBM at 1.6 billion cells is ~2 times faster than NS at 298 million. This is a key enabler for unprecedented high resolution simulations.
- Performance details:
 - Both Cartesian Navier-Stokes and LBM are memory-bound (not compute-bound) algorithms, the latter much more so than the former. Because of this, FLOPS are essentially “free”.
 - Non-linear, LBM collision operation where all the work happens is entirely local!! Data locality is critical to the computational efficiency of LBM relative to high-order Cartesian NS codes.
Velocity Magnitude (Center-plane)

NS-IIIM @ 222 million: expense = 15.3
NS-GCM @ 298 million: expense = 12.1

LBM @ 260 million: expense = 1.0
LBM @ 90 million: expense = 0.182
Summary

- Demonstrated the LBM approach on the AIAA BANC III Workshop Landing Gear problem IV.
 - Computed results compare well with the experimental data
 - 12-15 times speed-up was observed between LBM and NS calculations.
- LBM has better memory access and significantly lower floating point operations relative to WENO+RK4
- LBM has minimal numerical dissipation
Next Steps

- Continue Verification & Validation efforts
- Improve wall modeling for arbitrarily complex geometry at high Reynolds numbers
- Moving geometry capability
- Extend Mach number range to transonic and high speed flows
- Performance optimizations: serial and parallel

HLPW3, JSM, Case 2c, $\alpha = 20.59^\circ$

LAVA LBM full aircraft (in progress)

LAVA LBM moving geometry formulation (in progress)
Acknowledgments

• This work was partially supported by the NASA ARMD’s Advanced Air Transport Technology (AATT) and Transformational Tools and Technologies (T^3) projects

• LAVA team members in the Computational Aerosciences Branch at NASA Ames Research Center for many fruitful discussions

• Tim Sandstrom (optimized ray-tracing kernels, and particle visualizations) NASA Ames Research Center

• Computer time provided by NASA Advanced Supercomputing (NAS) facility at NASA Ames Research Center
Questions ?
Accurate wall models are critical for Cartesian-grid approaches such as LBM.

Filter-based slip wall model: Follows the approach of Bose and Moin (POF, 2014). Adapted for LAVA LBM through a generalized slip algorithm. Traditional wall models based on law-of-the-wall hard to justify for the BANCIII landing gear noise simulation. Reynolds number is too low. Subcritical separation from wheels expected.

Traditional equilibrium and non-equilibrium wall models (In progress): Follows the approach of Kawai and Larsson (POF, 2012) and Yang et al. (POF, 2015). Rules that express unknown incoming populations in terms of known outgoing populations modified to enforce momentum flux computed by the wall model.