Development and Validation of an Automated Simulation Capability in Support of Integrated Demand Management

Heather Arneson
NASA Ames Research Center

Antony D. Evans
Crown Consulting Inc., NASA Ames Research Center

Jinhua Li
Universities Space Research Association, NASA Ames Research Center

Mei Yueh Wei
NASA Ames Research Center
Strategic Planning

Tactical Planning
Human-in-the-loop (HITL) simulations

• Study integration of strategic and tactical planning tools
 – Strategic:
 • Pre-departure ground delay
 ⇝ Adjusts demand to roughly meet airport arrival constraint
 – Tactical:
 • Airborne delay near arrival airport
 • Pre-departure ground delay for short-haul flights
 ⇝ Delivers demand to actual arrival rate constraint

• Subject matter expert participants:
 – Air traffic controllers
 – Traffic flow managers
Challenges of HITL simulations

• Expensive
 – Subject matter expert participants
 – Simulation support staff

• Time consuming
 Minimum of 5 hours to capture long-haul flights pre-departure

• Limitations
 – Number of simulations executed
 – Number of airspace sectors that can be populated with traffic
 – Traffic volume
Motivation

• Evaluate over larger variation in parameters

• Simulate larger, more realistic traffic scenarios

• Augment HITL with automated background traffic
Objectives

• Automate HITL simulation

• Emulate HITL simulation results

• Maintain high fidelity trajectory simulation

• Incorporate updates to strategic planning tool
• Simulation structure
 – HITL simulation
 – HITL participant actions
 – Automated simulation capability

• Initial validation

• Conclusions and future work
Simulation structure

Trajectory Simulator
Simulation structure

Strategic Planner

Trajectory Simulator
Simulation structure

- Strategic Planner
- Trajectory Simulator
- Tactical Planner
Simulation structure

- Departure schedule
- Estimated flight times

Strategic Planner

Trajectory Simulator

Tactical Planner
Simulation structure

- Strategic Planner
- Trajectory Simulator
- Tactical Planner

Depature delay
Simulation structure

- Strategic Planner
- Tactical Planner
- Trajectory Simulator

- Departure delay
- Airborne delay
Simulation structure

- Strategic Planner
- Trajectory Simulator
- Tactical Planner
Simulation structure

Start communication server

- Strategic Planner
- Trajectory Simulator
- Tactical Planner
Simulation structure

- Start communication server
- Set simulation parameters

Strategic Planner

Trajectory Simulator

Tactical Planner
Simulation structure

- Start communication server
- Set simulation parameters

![Diagram showing simulation structure with Trajectory Simulator at the center, connected to Strategic Planner and Tactical Planner, and a symbol for setting program parameters]
Simulation structure

- Start communication server
- Set simulation parameters

Trajectory Simulator

- Strategic Planner
- Tactical Planner

Set program parameters
Run algorithm
Start communication server
Set simulation parameters

Simulation structure

Start communication server
Set simulation parameters

Trajectory Simulator

Strategic Planner
Tactical Planner

Set program parameters
Run algorithm
Send new departure times
Simulation structure

- Start communication server
- Set simulation parameters

Trajectory Simulator

- Strategic Planner
 - Set program parameters
 - Run algorithm
 - Send new departure times

- Tactical Planner
 - Schedule departures
Simulation structure

Start communication server
Set simulation parameters

Trajectory Simulator

• Set program parameters
• Run algorithm
• Send new departure times

Strategic Planner

Schedule departures
Control aircraft to meet arrival time

Tactical Planner
Simulation structure

- Start communication server
- Set simulation parameters
- Trajectory Simulator
- Strategic Planner
 - Set program parameters
 - Run algorithm
 - Send new departure times
- Tactical Planner
 - Schedule departures
 - Control aircraft to meet arrival time
Simulation structure

- Start communication server
- Set simulation parameters

Trajectory Simulator

- Strategic Planner
 - Set program parameters
 - Run algorithm
 - Send new departure times

- Tactical Planner
 - Schedule departures
 - Control aircraft to meet arrival time
Simulation structure

- Start communication server
- Set simulation parameters

Trajectory Simulator

- Strategic Planner
 - Set program parameters
 - Run algorithm
 - Send new departure times

- Tactical Planner
 - Schedule departures
 - Control aircraft to meet arrival time

✓
Simulation structure

- Start communication server
- Set simulation parameters
- Trajectory Simulator
- Strategic Planner
 - Set program parameters
 - Run algorithm
 - Send new departure times
- Tactical Planner
 - Schedule departures
 - Control aircraft to meet arrival time
Simulation structure

Start communication server
Set simulation parameters

Trajectory Simulator

Strategic Planner
- Set program parameters
- Run algorithm
- Send new departure times

Tactical Planner
- Schedule departures
- Control aircraft to meet arrival time
Simulation structure

- Start communication server
- Set simulation parameters

Trajectory Simulator

- Strategic Planner
 - Set program parameters
 - Run algorithm
 - Send new departure times
- Tactical Planner
 - Schedule departures
 - Control aircraft to meet arrival time
Simulation structure

- Start communication server
- Set simulation parameters

Strategic Planner:
- Set program parameters
- Run algorithm
- Send new departure times

Trajectory Simulator

Tactical Planner:
- Schedule departures
- Control aircraft to meet arrival time

Simulation structure diagram with tasks and components.
Tactical planner emulator

• Scheduler developed in house at NASA
 – Can run in fast-time
 – Code easily accessible for modification
• Adapted for Newark Liberty International Airport
• Modified to schedule internal departures automatically
Freeze Horizon

400 nmi

Runway Threshold

Tactical planning
Freeze Horizon

Tactical planning

Runway Threshold

400 nmi

Freeze Horizon
Freeze Horizon

400 nmi

Runway Threshold

Tactical planning
Tactical planning

Expected Time

Scheduled Time

Runway Threshold

Freeze Horizon

400 nmi

Runway Threshold
Tactical planning

Freeze Horizon

Runway Threshold

Expected Time

Scheduled Time

400 nmi

Runway Threshold
Freeze Horizon

Runway Threshold

Expected Time

Scheduled Time

+3 min
Freeze Horizon

Tactical planning

Runway Threshold

400 nmi

Expected Time

+3 min

Scheduled Time

Runway Threshold
Tactical planning

Freeze Horizon

Tactical planning

Runway Threshold

Expected Time

Scheduled Time

400 nmi

Runway Threshold

+3 min

Runway Threshold
Tactical planning

Freeze Horizon
400 nmi

Runway Threshold

Expected Time

Scheduled Time

Runway Threshold

+3 min
Tactical planning

Runway Threshold

Expected
Time
+15 min

Scheduled
Time

Priority to airborne flights

400 nmi

Freeze Horizon

Runway Threshold

+3 min
Tactical planning

Priority to airborne flights

Expected Time
+15 min

Scheduled Time
+0 min

Runway Threshold

Freeze Horizon

400 nmi

Runway Threshold
Freeze Horizon

Tactical planning

Expected Time

Scheduled Time

Runway Threshold

400 nmi

Runway Threshold

+3 min
Tactical planning

Priority to internal departures

Expected Time

Scheduled Time

Runway Threshold

Freeze Horizon

400 nmi

Runway Threshold

+3 min
Tactical planning

Priority to internal departures

Expected Time

Scheduled Time

Runway Threshold

Freeze Horizon

Runway Threshold

400 nmi

+3 min

+3 min
Tactical planning

Priority to internal departures

Expected Time

Scheduled Time

Runway Threshold

+3 min

+0 min

+3 min

Freeze Horizon

Runway Threshold

400 nmi
Experimental setup

• Duration of 5 hours
• 253 flights
 – 98 airborne at simulation start
 – 91 external departures
 – 64 internal departures
• Flights depart with some error
• Tactical scheduling paradigms
 – Priority given to airborne flights
 – Priority given to internal departures
Expected results

• Generate results *qualitatively* similar HITL
• HITL simulations have shown:
 – Priority given to airborne flights
 ⇒ Relatively high ground delay for internal departures
 – Priority given to internal departures
 ⇒ Significant reduction in ground delay for internal departures
 ⇒ Required airborne delay is manageable
Internal departure ground delay

Number of Flights vs. Ground Delay [min]

Priority Airborne
Internal departure ground delay

![Graph showing ground delay in minutes and number of flights for Priority Airborne and Priority Internal categories. The x-axis represents Ground Delay in minutes ranging from 0 to 60, and the y-axis represents the Number of Flights ranging from 0 to 20. The graph compares the number of flights with different ground delays, highlighting the distribution for Priority Airborne and Priority Internal flights.]
Airborne delay

Airborne Delay [min]

Number of Flights

Acceptable < 7 min
Marginal 7 to 14 min
Unacceptable > 14 min

Priority Airborne
Airborne delay

Number of Flights vs. Airborne Delay [min]

- Acceptable: < 7 min
- Marginal: 7 to 14 min
- Unacceptable: > 14 min

- Priority Airborne
- Priority Internal
Comparison to HITL simulation

<table>
<thead>
<tr>
<th>Tactical Scheduling Paradigm</th>
<th>Simulation</th>
<th>Tactical Airborne Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Acceptable (<7 min)</td>
</tr>
<tr>
<td>Priority Internals</td>
<td>HITL</td>
<td>82 %</td>
</tr>
<tr>
<td></td>
<td>Automated</td>
<td>87 %</td>
</tr>
<tr>
<td>Priority Airborne</td>
<td>HITL</td>
<td>94 %</td>
</tr>
<tr>
<td></td>
<td>Automated</td>
<td></td>
</tr>
</tbody>
</table>
Comparison to week-long HITL

<table>
<thead>
<tr>
<th></th>
<th>HITL</th>
<th>Automated</th>
<th>Automated fast-time (5x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject matter experts</td>
<td>320 hours</td>
<td>0 hours</td>
<td>0 hours</td>
</tr>
<tr>
<td>Simulation technician</td>
<td>32 hours</td>
<td>1 hour</td>
<td>1 hour</td>
</tr>
<tr>
<td>Number of simulations</td>
<td>4</td>
<td>20</td>
<td>104</td>
</tr>
<tr>
<td>Active Simulation Time</td>
<td>20 hours</td>
<td>100 hours</td>
<td>104 hours</td>
</tr>
</tbody>
</table>
Automated simulation capability

- Automate HITL simulation
- Emulate HITL simulation results
- Maintain high fidelity trajectory simulation
- Incorporate updates to strategic planning tool
Conclusions

Automated simulation capability
- Automate HITL simulation
- Emulate HITL simulation results
- Maintain high fidelity trajectory simulation
- Incorporate updates to strategic planning tool

Benefits
- Evaluate over larger variation in parameters
- Simulate larger, more realistic traffic scenarios
- Augment HITL by automated background traffic
Future work

Development

• Add other New York airports:
 LaGuardia Airport (LGA)
 John F. Kennedy International Airport (JFK)
• Augment HITL simulations with more traffic
• Enable fast-time simulation (up to 5x real-time)

Research

• Parameter studies
• Uncertainty in departure and flight time
Backup
Fast Time MACS
• Flights analyzed: 196
• FlightState data output from MACS
• Trajectory information every 12 seconds
• Resampled in 1 minute intervals
 (for 1x reference sim and 1x, 5x, 10x, 25x sim)
Distance measure

t = 240

t = 300

t = 360

real-time

fast-time

along-track

cross-track
Along-track distance

No Wind

Along-track Distance from 1x Track [nmi]

Simulation Speed

1x 5x 10x 25x

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

25th percentile
75th percentile
median
90th percentile

25th percentile
10th percentile
With wind, 25x: along-track distance

Along-track Distance from 1x Track [nmi]

Wind Condition

- None
- Mild
- High

Percentiles:
- 10th percentile
- 25th percentile
- 75th percentile
- 90th percentile

Values:
- None: -2.0
- Mild: -1.5
- High: -1.0
Flight time difference

No Wind

- Total Flight Time Difference [sec]
- 1x, 5x, 10x, 25x
- 10th, 25th, 50th, 75th, 90th percentile
- Median

Diagram showing the distribution of flight time differences for different wind speeds and conditions.
Flight time difference

No Wind

Total Flight Time Difference [sec]

1x 5x 10x

-15 -10 -5 0 5 10 15

RTA sim departure error [Yoo 2016]

Departure Errors (Seconds)

-1080 -720 -360 0 360 720 1080

Frequency

0 2 4 6 8 10

TABLE I. Crossing Time (CT) Performance (Seconds)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Out of Tolerance</th>
<th>Marginal Tolerance Range</th>
<th>Targeted Tolerance Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-RTA</td>
<td>12.0%</td>
<td>23.7%</td>
<td>33.6%</td>
</tr>
<tr>
<td>RTA</td>
<td>2.0%</td>
<td>12.1%</td>
<td>66.9%</td>
</tr>
</tbody>
</table>

V. RESULTS

A. Results of Hypothesis A:
Assigning RTA to aircraft improves Crossing Time performance.

A total of 396 aircraft (both pre-departures and airborne) received RTA across all conditions during the study. Of those, 265 (66.9%) aircraft crossed the FEAs within +/- 60 seconds (i.e. the targeted tolerance range for this study) and 352 (88.9%) aircraft crossed the FEAs within +/-300 seconds, which was identified as a marginal tolerance range. In contrast, only 33.6% (133 out of 396) of the Non-RTA assigned aircraft’s CT performance met the targeted tolerance range and 75.5% (299 out of 396) crossed the FEAs within the marginal tolerance range. The marginal range of +/- 5 minutes was established based on subject matter experts saying that 5-minute conformance was “workable/marginal” for the TBFM system to manage the arrival flow into EWR. Figure 8 shows the histogram of the CT performance of RTA and Non-RTA assigned aircraft. The table I summarizes the CT performance.
Flight time difference

With Wind

<table>
<thead>
<tr>
<th>Total Flight Time Difference [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
</tr>
<tr>
<td>5x</td>
</tr>
<tr>
<td>10x</td>
</tr>
</tbody>
</table>

RTA sim departure error [Yoo 2016]

-300 -60 60 300

E. Dependent Variable

The dependent variable of this study is the Crossing Time (CT) performance, which is the target CT at the FEA minus the actual CT. Hence, a negative error indicates that the flight was late to its target CT, and a positive error indicates that it arrived early to its target CT. The CT performance was measured for all aircraft, whether or not they were assigned an RTA.

IV. HYPOTHESES

The following hypotheses were examined to explore the use of RTA to improve delivery accuracy at the FEAs to see how performance varies under the influence of identified factors.

A. Hypothesis A: Assigning RTA to aircraft will improve Crossing Time performance.

B. Hypothesis B: Strong winds may degrade Crossing Time performance.

C. Hypothesis C: Flight distance may affect Crossing Time performance.

D. Hypothesis D: Crossing Time performance of RTA assigned aircraft will decrease as wind forecast errors increase.

Hypothesis A compares the CT performance of RTA assigned aircraft to Non-RTA assigned aircraft. **Hypothesis B** examines how wind severity affects the CT performance of RTA and Non-RTA assigned aircraft. **Hypothesis C** examines the effect of flight distance (the distance from cruise phase until the aircraft crosses the FEA) on the CT performance of both RTA and Non-RTA aircraft. **Hypothesis D** provides insight on wind forecast accuracy requirements for achieving good CT performance by identifying the relationship between wind forecast errors and CT performance.

V. RESULTS

A. Results of Hypothesis A: Assigning RTA to aircraft improves Crossing Time performance.

A total of 396 aircraft (both pre-departures and airborne) received RTA across all conditions during the study. Of those, 265 (66.9%) aircraft crossed the FEAs within +/- 60 seconds (i.e. the targeted tolerance range for this study) and 352 (88.9%) aircraft crossed the FEAs within +/-300 seconds, which was identified as a marginal tolerance range. In contrast, only 33.6% (133 out of 396) of the Non-RTA assigned aircraft's CT performance met the targeted tolerance range and 75.5% (299 out of 396) crossed the FEAs within the marginal tolerance range. The marginal range of +/- 5 minutes was established based on subject matter experts saying that 5-minute conformance was "workable/marginal" for the TBFM system to manage the arrival flow into EWR. Figure 8 shows the histogram of the CT performance of RTA and Non-RTA assigned aircraft. The table I summarizes the CT performance.

![Histogram of Crossing Time Performance](chart.png)

TABLE I. CROSSING TIME PERFORMANCE (SECONDS)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Out of Tolerance</th>
<th>Marginal Targeted Tolerance Range</th>
<th>Marginal Out of Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA</td>
<td>2.0%</td>
<td>12.1%</td>
<td>66.9%</td>
</tr>
<tr>
<td>Non-RTA</td>
<td>12.0%</td>
<td>23.7%</td>
<td>33.6%</td>
</tr>
</tbody>
</table>

Fig. 7. Pre-scripted departure errors (seconds) of the pre-departures that crossed the FEAs.

Fig. 8. The histogram of the crossing time performance of the non-RTA assigned aircraft and the RTA assigned aircraft.
TBFM Emulator
New timeline, frozen list, ref. time

ID internals with EDCT-20 min <= ref. time
Store for internal departure scheduling list
Set event trigger to EDCT-20 min

ID externals with FH CT <= ref. time, not in frozen list
Store for airborne scheduling list
Set event trigger to FH CT

ID internals that have taken off but are not in frozen list
Store for airborne scheduling list
Set event trigger to take off time

Set idx = 0
Sort all event triggers chronologically

Event trigger(idx) <= ref. time?
Y
idx += 1
N

flight(idx) in internal departure scheduling list?
N
Extract ETAs for all externals in timeline
Y
Checkbox ON
Add internal flight(idx) to external flight list
Checkbox OFF
Sort external flight list by THD ETA
Schedule external flight list around frozen flights
For flight(idx): Set sched. dep = MF STA-transit time
Set new ETA = STA
Set event trigger = new dep. time + dep. error
Remove flight(idx) from internal departure scheduling list

Y
Event trigger(idx) <= ref. time?
idx += 1
N

flight(idx) in airborne scheduling list?
N
Internal?
Y
Extract ETA from timeline
ETA += dep error
N
Schedule flight(idx) around frozen flights
Add flight(idx) to frozen list

Extract ETAs for all externals in timeline
Sort external flight list by THD ETA
Schedule external flight list around scheduled externals
Extract ETAs for flight(idx)
Schedule flight(idx) around scheduled externals
For flight(idx): Set sched. dep = MF STA-transit time
Set new ETA = STA
Set event trigger = new dep. time + dep. error
• Scheduler from Optimized Route Capability (ORC)
 – Fast-time
 – Code easily accessible for modification
• Adapted for EWR
• Modified to schedule internal departures automatically
 – Check box ON/OFF
• Integrated with Automated Simulation Capability / MACS
<table>
<thead>
<tr>
<th>Capability</th>
<th>rTBFM</th>
<th>eTBFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast-time</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>EWR adaptation</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Schedule flights at Meter Fix</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Schedule flights at Runway Threshold</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Schedule flights at Final Approach Fix</td>
<td>✔</td>
<td>Planned</td>
</tr>
<tr>
<td>Model wind effects inside TRACON</td>
<td>✔</td>
<td>Planned</td>
</tr>
<tr>
<td>Model wind effects upstream of TRACON</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Automated scheduling of internal departures (Check Box ON/OFF)</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Extended metering</td>
<td>✔</td>
<td>Planned</td>
</tr>
<tr>
<td>Coupled scheduling</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Integrated with Automated Simulation Capability / MACS</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Interface directly with SMART-NAS Testbed</td>
<td></td>
<td>Planned</td>
</tr>
</tbody>
</table>
Initial validation: ORC scheduler

<table>
<thead>
<tr>
<th>Metric Description</th>
<th>Meter Fix</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. hTBFM metering delay (standard deviation)</td>
<td>80</td>
<td>136</td>
</tr>
<tr>
<td>Avg. eTBFM emulator metering delay (standard deviation)</td>
<td>143</td>
<td>180</td>
</tr>
<tr>
<td>Avg. ETA Error: hTBFM-eTBFM (standard deviation)</td>
<td>19</td>
<td>52</td>
</tr>
<tr>
<td>Avg. STA Error: hTBFM-eTBFM (standard deviation)</td>
<td>-43</td>
<td>7</td>
</tr>
</tbody>
</table>

Diagrams

Arrival at Meter Fix

- **Legend**:
 - eTBFM
 - hTBFM
 - STA = ETA

Arrival at Runway Threshold

- **Legend**:
 - eTBFM
 - hTBFM
 - STA = ETA
Initial validation: TBFM emulator

<table>
<thead>
<tr>
<th></th>
<th>[Seconds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. rTBFM internal departure scheduling delay</td>
<td>66 (72)</td>
</tr>
<tr>
<td>Avg. eTBFM internal departure scheduling delay</td>
<td>70 (90)</td>
</tr>
<tr>
<td>Avg. scheduled departure time error (rTBFM-eTBFM)</td>
<td>-4 (129)</td>
</tr>
</tbody>
</table>

TBFM Internal Departure Delay

- **eTBFM**
- **hTBFM**
- **STA = ETA**
Simulation Manager
Simulation manager

Server

TCP/IP communication

Clients

CTOP Emulator

FTS Manager

TBFM Emulator

MACS
Communication GUI

Fast Time Sim

15:23:52

Run Mode
Manual Run

Start Macs
- Scenario File: C:/FastTimeSim/NYTBO/MacsScenarios/Traffic/GAG_V9.txt
- Stop Macs
- Start nCTOP

Macs On
nCTOP Off

Time Factor
1x

Periodic
- Start Periodic
Stopped

Exit
Demo
Create and run batch process

Create batch file **FTS_bat.txt**

<table>
<thead>
<tr>
<th>RunName</th>
<th>Scenario</th>
<th>TimeFactor</th>
<th>RunMinutes</th>
<th>startnCTOPseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>proc1</td>
<td>C:/fts-tbfm/input_files/EWR/Scenario/GAG_v9.txt</td>
<td>1x</td>
<td>30 10</td>
<td></td>
</tr>
<tr>
<td>proc2</td>
<td>C:/fts-tbfm/input_files/EWR/Scenario/MACS_20170421_1hr_traffic_NOdeperr.txt</td>
<td>1x</td>
<td>30 10</td>
<td></td>
</tr>
</tbody>
</table>

Python command

```python
Python FTS_Macs-batch.py FTS_bat.txt
```
Launch MACS
Enable external communication

Communication window

Server Status: Registered Open
Start simulation

Scenario file name
Simulation time
Simulation time factor (simulation speed)
59
Waiting for MACS traffic to settle...

Click here if you are not redirected...
Calculate new departure times
Run simulation

Traffic display screen

Communication window

Simulation setup window
Monitor simulation status

Waypoints specified more than once:

- SSC345020, previous: 14.2502777778, -79.2075, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, original, None
- SSC345020, new: 14.2502777778, -79.2075, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, original, None

Received a flight data......
Processing the flight data....

08-04-2017_11-52-02.17
Stop
Re-schedule internal departure ASQ4672...
Re-schedule internal departure RPA3142...
The flight data is processed....

Received a flight data......
Received a flight data......
Processing the flight data....

The flight data is processed....
Batch process terminated

Received a flight data.....
Processing the flight data....

The flight data is processed....

Waiting for finishing the last data.

2017-08-04 12:05:01.056000
Log data