TRACC_PB SOSS Integrated Traffic Simulation for CLT Ramp Operation

Nikolai Okuniek
(German Aerospace Center - DLR)

Zhifan Zhu
(SGT for NASA Ames)

Special thanks to:
Ingrid Gerdes (DLR) for TRACC_PB software support
Sergei Gridnev (SGT for NASA Ames) for SOSS support

Joint Workshop for DLR – NASA ATM Research Collaboration
NASA Ames Research Center, Moffett Field, California, USA
August 22-24, 2017
Outline

• Motivations
• Goals and work scope
• Approach
• TRACC adaptation & functionality for CLT ramp operation
• SOSS adaptation to TRACC trajectory
• TRACC_PB and SOSS integration for CLT
• Lessons learned & remaining tasks
Motivations

• Two different approaches have been developed by DLR and NASA Ames for surface ATM

• Collaboration **benefit for NASA** -- understand DLR’s approach to surface traffic management (benefits and tradeoffs)

• Collaboration **benefit for DLR**: how TRACC 4D trajectory concept performs in US airport operation environment (high traffic demand)
Goals and Scope

• Evaluation of the two approaches in a same simulation environment – eliminate taxi speed discrepancy

• Focus on TRACC surface trajectory optimization capability – eliminate taxi route discrepancy

• Experiment area – CLT ramp area
Approach

- Build a simulation environment by using selected TRACC functionality and NASA Ames SOSS fast time simulation platform
- Conduct simulations in an integrated TRACC_PB and SOSS environment
- Analyze simulation results to understand 4D trajectory operation concept, benefits and constraints, such as
 - TMAT compliance
 - Trajectory speed stability
 - Taxi conflicts analysis
 - Ramp traffic throughput
 - Gate hold
TRACC Adaptation for CLT Ramp Operation

- **TRACC**
 - Fast time simulation module and visualization of traffic
 - Conflict detection and resolution module
 - Flexible trajectory system (situation dependent trajectories based on route segments)
 - Applied to movements on ramp/apron
 - Holdings possible (speed=0)

- **TRACC_PB**
 - Simulation and visualization is carried out by SOSS
 - Conflict-free trajectories are created but not supervised
 - One predefined trajectory between each pair of position and spot, only speed profile is optimized
 - Applied to ramp only (between positions and spots).
 - Aircraft are held at the positions. No holdings on ramp area!
TRACC Functionality for CLT Ramp Operation

- Calculate conflict-free trajectories for flights in the ramp area
- Calculate Target Off-Block Time (TOBT) to meet TMAT at spot.
- If requested TMAT cannot be met with conflict-free trajectory, calculate and propose a TMAT update
SOSS manages aircraft traffic over an airport node-link graph, consisting of gate, spot, runway, etc.

In time-based operation, a scheduler issues taxi advisory, typically at gate, spot, and runway, to aircraft to manage the traffic.

SOSS handles taxi conflicts.

SOSS makes scheduling request with a fixed interval, e.g. 10 seconds.
• In trajectory-based operation, TRACC_PB issues taxi trajectory including speed profile for each node inside the ramp

• SOSS executes each flight speed profile inside the ramp

• SOSS monitor taxi conflicts inside the ramp

• Trajectory calculation request is triggered by events in SOSS, e.g., a TMAT is updated
• Integration system setup
• Interface Control Document (ICD)
• Departure flight transition
• Arrival flight transition
TRACC_PB and SOSS Integration for CLT

- SOSS connects to TRACC_PB during simulation
- SOSS sends ramp traffic data (or events) to TRACC_PB
- TRACC_PB responds with calculated taxi trajectories in the ramp
- SOSS uses the trajectories to move flights in the ramp
- CLT airport model used by SOSS is converted to TRACC recognized tables
ICD contains a data schema for messages between SOSS and TRACC_PB

Each flight is assigned a gate (or parking) and spot

TMAT – target movement area time for departure, emulated by SOSS and sent to TRACC_PB

TMET – target movement area exit time for arrival, emulated by SOSS and sent to TRACC_PB

EOBT -- earliest off-block time for departure

TOBT – target off-block time calculated by TRACC_PB

TSAT – equal to TOBT for pushbacks

Speed [0,*] – speed profile calculated by TRACC_PB along taxi trajectory
• Departure flight state transition by events
 – planned: initial EOBT issued
 – scheduled: initial TMAT issued
 – ready: call for push, TMAT frozen
 – off_block: push started
 – spot: spot reached
• Arrival flight state transition by events
 – planned: initial TMET issued
 – scheduled: TMET frozen
 – taxi_in: entering spot
 – in_block: at gate
TRACC_PB and SOSS Integration at CLT

- Test runs
 - Succeeded with 2 departures and 1 arrival; test show TRACC_PB’s trajectories executed by SOSS
 - Failed with large traffic scenario: ~60 departures and ~60 arrivals in a 90-min scenario
Lessons Learned

• Concept of operations & simulations must be fully elaborated, such as
 – Gate pushback processes
 – Real time (HITL or not) vs fast time
• Integration interface control document is a must and has to be very detailed
• Lots of patience
 – Remote debug and output validation
Remaining Tasks

- Debug and finish current integration test with varying traffic loads
- Run designed simulation scenario(s)
- Collect data and document findings with benefits & constraints analysis
TRACC Adaptation: Possible Extensions

• Possible Extensions of TRACC_PPB to increase the quality of simulation results:
 – Introduction of several different basic trajectories between all position and spots (and vice versa)
 – Introduction of holdings taking place on the ramp area