Habitable Exoplanet Imager

Optical Telescope Structural Design and Performance Prediction

H. Philip Stahl
Contributors

JPL
• Stefan Martin
• Scott Howe
• Gary Kuan
• Keith Warfield
• Team X

MSFC
• Thomas Brooks, NASA
• Jacqueline Davis, NASA
• Brent Knight, NASA
• William Arnold, AI Solutions
• Mike Baysinger, ESSA
• Jay Garcia, ESSA
• Jonathon Gaskin, UNCC
• Ronald Hunt, ESSA
• Andrew Singleton, ESSA
• Mary Caldwell, ESSA
• Melissa Therrell, ESSA
HabEx

Habitable Exoplanet Imaging Mission (HabEx) is a concept for a mission to directly image and characterize planetary systems around Sun-like stars.

In addition to the search for life on Earth-like exoplanets, HabEx will enable a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV.

HabEx is one of four mission concepts currently being studied for the 2020 Astrophysics Decadal Survey.
OTA Specification

Science Requirements
Launch Vehicle Capacity
Programmatic Constraints

Exoplanet
 Habitable Zone Size
 Contrast
 Contrast
 Contrast
 Star Size
 Architecture

General Astrophysics
 Diffraction Limit
 Spatial Resolution

Launch Vehicle
 Up-Mass Capacity
 Fairing Size

Programmatic
 Budget

Engineering Specifications

Minimum Telescope Diameter
 Mid/High-Spatial Wavefront Error
 WFE Stability
 Polarization
 Line of Sight Stability
 Unobscured (off-axis)

Low/Mid-Spatial Wavefront Error
 Line of Sight Stability

Mass Budget
 Architecture (monolithic/segmented)

Maximum Telescope Diameter
Design Assumptions

Mission with an Internal Coronagraph requires:
- Unobscured Aperture = off-axis
- Stable Wavefront
- Polarization Uniformity = F/2.5 Primary

General Astrophysics:
- 400 nm diffraction limit requires no development effort

Launch Vehicle
- SLS will exist.
 - ‘Baseline’ design mass and volume constraints are secondary to stability.
 - ‘Alternative’ designs will be considered for EELV.

The Most important Design Constraints are:
- Line of Sight Stability
- Wavefront Stability

Mission with Star Shade only can be on-axis and not ‘ultra-stable’.
Optical Telescope Assembly (OTA) Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Unobscured Off-Axis F/2.5 TMA</td>
</tr>
<tr>
<td>Aperture Diameter</td>
<td>4-meters Monolithic (Minimum)</td>
</tr>
<tr>
<td></td>
<td>6.5-meters Segmented or Monolithic (Maximum)</td>
</tr>
<tr>
<td>Mass Budget</td>
<td>< 10,000 kg (excluding science instruments & spacecraft)</td>
</tr>
<tr>
<td>LOS Stability</td>
<td>< 2.5 milli-arc-second on-sky jitter (astrophysics and starshade)</td>
</tr>
<tr>
<td></td>
<td>< 0.5 milli-arc-second on-sky jitter (coronagraph)</td>
</tr>
<tr>
<td>Diffraction Limit</td>
<td>400 nm (assumed to be achievable)</td>
</tr>
<tr>
<td>Wavefront Error</td>
<td>30 nm rms Total (assumed achievable)</td>
</tr>
<tr>
<td>Primary Mirror</td>
<td>Total SFE < 7 nm rms</td>
</tr>
<tr>
<td>(cpd = cycles/diameter)</td>
<td>Low-Order (< 30 cpd) < 5 nm rms</td>
</tr>
<tr>
<td></td>
<td>Mid-Spatial (30 to 90 cpd) < 4 nm rms</td>
</tr>
<tr>
<td></td>
<td>High-Spatial (>90 cpd) < 2 nm rms</td>
</tr>
<tr>
<td></td>
<td>Roughness < 1 nm rms</td>
</tr>
<tr>
<td>Wavefront Stability</td>
<td>< 2 nm rms (astrophysics and starshade)</td>
</tr>
<tr>
<td></td>
<td>< 10 to 500 pm rms depending on spatial frequency (coronagraph)</td>
</tr>
</tbody>
</table>
4-meter Monolithic F/2.5 Off-Axis Concept fits inside SLS
Mission Architecture Constraints

Mission Architecture design constraints:

• Minimum Aperture for science is 4 meters.
• Coronagraph desires unobscured off-axis optical design.
• Because of coronagraph polarization sensitivity, the primary mirror is F/2.5 which defines a PM/SM distance of ~ 9 meters.
• For thermal stability and polarization, there is a desire to place the science instruments beside the PM rather than behind it.
• Forward Scarf limits close approach angle to Sun.
HabEx 4-m Off-Axis Initial Concept

Observatory = OTA (PM/SM/Tube) & Science Instruments.

Observatory attaches to Spacecraft.

Solar Panels on Sunshade attach to Spacecraft.
HabEx 4-m Off-Axis Initial Concept

Four Science Instruments:

- Coronagraph (imager and spectrograph)
- Starshade Imager (imager and spectrograph)
- General Astrophysics Workhorse Camera (imager and spectrograph)
- General Astrophysics UV Spectrograph
Mission Architecture vs Launch Vehicle

• 8.4-m Long Fairing on Block I Core
• 7.5 meter dynamic envelop enables 4-m PM with SI on side
 o Could accommodate up to 6-m PM with Si on side.
• 27.4 m height enables dual launch of observatory & star shade
 o 4-m Observatory Only could be launched with no deployments
 o 4-m Observatory and Star Shade could be dual launched with deployment of forward scarf
 o 6-m Observatory Only could be launched with deployed forward scarf
• Mass to SE-L2 = 44 mt
Initial Launch Configuration Options
HabEx Baseline Concept

Co-Launch Observatory and Star Shade in SLS 8.4-m Long Fairing on Block 1B core.
Telescope Structure Design:

Volume & Mass
HabEx Telescope Design: CAD

Optical Design for Telescope and Instruments provide by JPL and imported into CAD via STEP files.
Select CAD views
HabEx Telescope Design: FEM

To evaluate opto-mechanical performance, created FEM of Structural Elements.

Changed exo-skeleton to lateral exo-truss elements connecting to the internal straylight baffles.

Straylight baffles are not continuous, because beam path.

PM Truss depth arbitrarily set at 2-meters based on available SLS fairing height.
HabEx Baseline Concept

By using microthruster instead of reaction wheels, it is possible to integrate the spacecraft bus with the primary mirror assembly allowing for a shorter total payload height.
Science Instrument & Spacecraft Bus Mass

Mass provided by JPL Team X:

- Science Instruments 1464 kg
- Spacecraft Bus 3600 kg

Analysis indicates that Science Instrument mass has negligible effect on dynamic performance.

Instruments

UV Spectrometer = 274 kg
Coronagraph = 650 kg
Wide Field Imager = 230 kg
Star Shade Camera = 210 kg

UV Spectrometer Focal Plane & Electronics = 100 kg
HabEx Telescope Design: Mass Estimate

Secondary Mirror
Mass = 10 kg

Tube / Tower
Mass = 3062 kg

Tertiary Mirror
Mass = 20 kg

Sci Instruments
Mass = 1464 kg

Primary Mirror Assembly
Mass = 2893 kg

Optical Telescope Assembly (excluding BUS & Instruments)
Mass = 5985 kg

Primary Mirror
Mass = 1652 kg

PM Truss
Mass = 1241 kg

Spacecraft BUS
Mass = 3600 kg

Total Observatory Mass
Mass = 11,049 kg
Telescope Specifications

Line of Sight Analysis
Wavefront Stability Analysis
Optical Telescope Assembly Structure

A primary purpose of the OTA Structure is to facilitate the alignment of the optical system and maintain that alignment to the required tolerances over all operating conditions: thermal, mechanical, space, etc.

So, the key question is – what are the required tolerances.

Tolerances can be derived from:
- Line of Sight Stability Requirement
- Wavefront Stability Requirement
Line of Sight (LOS) Stability Specification

Telescope’s on-sky LOS Stability specification includes **temporal frequency**. It is assumed that a laser-truss or low-order wavefront-sensor (LOWFS) system can sense LOS drift/vibration at frequencies below 10 Hz and control actuators or a fine steering mirror (FSM) to correct such LOS errors.

<table>
<thead>
<tr>
<th>Temporal Frequency</th>
<th>On-Sky LOS Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10 Hz</td>
<td>< 1 mas rms per axis</td>
</tr>
<tr>
<td>> 10 Hz</td>
<td>< 0.5 mas rms per axis</td>
</tr>
<tr>
<td></td>
<td>(only required for internal coronagraph)</td>
</tr>
</tbody>
</table>

NOTE: For Baseline Optical Design, 0.5 mas on-sky = 40 mas at FSM.

Discussion:

- Coronagraph requires internal LOS Stability to be < 0.5 mas to avoid beam shear.
- Coronagraph will have a LOWFS/FSM which is assumed able to reduce 2.5 mas LOS motion of frequency < ~10 Hz to required < 0.5 mas. But not > ~ 10 Hz.
- Astrophysics Instruments will not have FSM and requires LOS to be stable to < 1/10\(^{th}\) of PSF radius.
- For 4-m telescope, PSF (1.22\(\lambda\)/D half-angle) at 400 nm is ~122 n-radian (~ 25 mas)
- For 6-m telescope, PSF (1.22\(\lambda\)/D half-angle) at 400 nm is ~ 80 n-radian (~ 16 mas)
LOS Stability State of Art

HST LOS stability is 8 mas (1/10 full PSF angle)

JWST LOS Jitter before FSM is < 7 mas (1/10 half PSF angle)

JWST LOS Jitter specification after FSM < 3.7 mas

- SM motion @ ~7 Hz
- PM motion @ ~17 Hz

Because of dampening, a warm JWST might have LOS stability of < 0.5 mas.

LOS Stability Sensitivities

Zemax Tolerance Analysis of the LOS error produced by Rigid Body (6-DOF) Misalignments of the Primary, Secondary and Tertiary Mirrors for the baseline F/2.5 optical design.

<table>
<thead>
<tr>
<th>LOS Sensitivity to Component Rigid Body Alignment</th>
<th>ZEMAX</th>
<th>Tolerance</th>
<th>Units</th>
<th>X-Tilt</th>
<th>Y-Tilt</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM X-Decenter</td>
<td>DX</td>
<td>1</td>
<td>nm</td>
<td>1.72</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>PM Y-Decenter</td>
<td>DY</td>
<td>1</td>
<td>nm</td>
<td>0</td>
<td>1.67</td>
<td>mas</td>
</tr>
<tr>
<td>PM Z-Despace</td>
<td>DZ</td>
<td>1</td>
<td>nm</td>
<td>0</td>
<td>0.43</td>
<td>mas</td>
</tr>
<tr>
<td>PM X-Tilt (Y-Rotation)</td>
<td>TY</td>
<td>1</td>
<td>mas</td>
<td>-165.31</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>PM Y-Tilt (X-Rotation)</td>
<td>TX</td>
<td>1</td>
<td>mas</td>
<td>0</td>
<td>167.98</td>
<td>mas</td>
</tr>
<tr>
<td>PM Z-Rotation</td>
<td>TZ</td>
<td>1</td>
<td>mas</td>
<td>20.88</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>SM X-Decenter</td>
<td>DX</td>
<td>1</td>
<td>nm</td>
<td>-1.53</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>SM Y-Decenter</td>
<td>DY</td>
<td>1</td>
<td>nm</td>
<td>0</td>
<td>-1.48</td>
<td>mas</td>
</tr>
<tr>
<td>SM Z-Despace</td>
<td>DZ</td>
<td>1</td>
<td>nm</td>
<td>0</td>
<td>-0.43</td>
<td>mas</td>
</tr>
<tr>
<td>SM X-Tilt (Y-Rotation)</td>
<td>TY</td>
<td>1</td>
<td>mas</td>
<td>14.54</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>SM Y-Tilt (X-Rotation)</td>
<td>TX</td>
<td>1</td>
<td>mas</td>
<td>0</td>
<td>-14.8</td>
<td>mas</td>
</tr>
<tr>
<td>SM Z-Rotation</td>
<td>TZ</td>
<td>1</td>
<td>mas</td>
<td>-1.62</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>TM X-Decenter</td>
<td>DX</td>
<td>1</td>
<td>nm</td>
<td>-0.19</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>TM Y-Decenter</td>
<td>DY</td>
<td>1</td>
<td>nm</td>
<td>0</td>
<td>-0.19</td>
<td>mas</td>
</tr>
<tr>
<td>TM Z-Despace</td>
<td>DZ</td>
<td>1</td>
<td>nm</td>
<td>0</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>TM X-Tilt (Y-Rotation)</td>
<td>TY</td>
<td>1</td>
<td>mas</td>
<td>2.02</td>
<td>0</td>
<td>mas</td>
</tr>
<tr>
<td>TM Y-Tilt (X-Rotation)</td>
<td>TX</td>
<td>1</td>
<td>mas</td>
<td>0</td>
<td>-2.02</td>
<td>mas</td>
</tr>
<tr>
<td>TM Z-Rotation</td>
<td>TZ</td>
<td>1</td>
<td>mas</td>
<td>0.0036</td>
<td>0</td>
<td>mas</td>
</tr>
</tbody>
</table>
Preliminary LOS Stability Tolerances

Using alignment sensitivity matrix, an excel spreadsheet evaluates different alignment allocations to produce a specification for each component. This allocation is based on dynamic analysis. Most important is PM Decenter.

<table>
<thead>
<tr>
<th>LOS RSS Error</th>
<th>ALLOCATION (one sided PV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
<td>ZEMAX</td>
</tr>
<tr>
<td>PM X-Decenter</td>
<td>DX</td>
</tr>
<tr>
<td>PM Y-Decenter</td>
<td>DY</td>
</tr>
<tr>
<td>PM Z-Despace</td>
<td>DZ</td>
</tr>
<tr>
<td>PM Y-Tilt</td>
<td>TX</td>
</tr>
<tr>
<td>PM X-Tilt</td>
<td>TY</td>
</tr>
<tr>
<td>PM Z-Rotation</td>
<td>TZ</td>
</tr>
<tr>
<td>SM X-Decenter</td>
<td>DX</td>
</tr>
<tr>
<td>SM Y-Decenter</td>
<td>DY</td>
</tr>
<tr>
<td>SM Z-Despace</td>
<td>DZ</td>
</tr>
<tr>
<td>SM Y-Tilt</td>
<td>TX</td>
</tr>
<tr>
<td>SM X-Tilt</td>
<td>TY</td>
</tr>
<tr>
<td>SM Z-Rotation</td>
<td>TZ</td>
</tr>
<tr>
<td>TM X-Decenter</td>
<td>DX</td>
</tr>
<tr>
<td>TM Y-Decenter</td>
<td>DY</td>
</tr>
<tr>
<td>TM Z-Despace</td>
<td>DZ</td>
</tr>
<tr>
<td>TM Y-Tilt</td>
<td>TX</td>
</tr>
<tr>
<td>TM X-Tilt</td>
<td>TY</td>
</tr>
<tr>
<td>TM Z-Rotation</td>
<td>TZ</td>
</tr>
</tbody>
</table>

105.18 mas
39.86 mas

Notes:
- For a 4-meter PM, 1 nano-radian of tilt is equal to 2 nm PV.
- For a 0.5-meter SM, 1 nan-radian of tilt is equal to 0.25 nm PV.
- Eliminated TM/PM Y-Decenter by coupling PM to TM in Y-axis.
WFE Stability Specification

WFE stability specification includes spatial and temporal frequency (rms WFE per WFSC update cycle)

For a Telescope with an internal coronagraph (assuming VVC-6)

- Low-Order < 0.5 nm rms per update cycle
- Mid-Spatial Frequency < 0.01 nm rms per update cycle

For a Telescope without an internal coronagraph

- WFE Stability < 2 nm rms maximum
WFE Stability State of Art

JWST WFE stability specification < 13 nm rms

- SM motion @ ~7 Hz
- PM motion @ ~17 Hz
- PM Segment motion @ ~ 40 Hz

Per Feinberg, et. al., because of dampening, a warm JWST may have WFE stability of < 2 nm rms.

Wavefront Error (WFE) Stability Specification

WFE stability specification depends on the coronagaph.

For Vector Vortex, higher charge (i.e. 6 or 8 vs 4) rejects more WFE

<table>
<thead>
<tr>
<th>Aberration</th>
<th>Indices</th>
<th>Allowable RMS wavefront error (nm) per mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>charge 4</td>
</tr>
<tr>
<td>Tip-tilt</td>
<td>1 ±1</td>
<td>1.1</td>
</tr>
<tr>
<td>Defocus</td>
<td>2 0</td>
<td>0.8</td>
</tr>
<tr>
<td>Astigmatism</td>
<td>2 ±2</td>
<td>0.0067</td>
</tr>
<tr>
<td>Coma</td>
<td>3 ±1</td>
<td>0.0062</td>
</tr>
<tr>
<td>Spherical</td>
<td>4 0</td>
<td>0.0048</td>
</tr>
<tr>
<td>Trefoil</td>
<td>3 ±3</td>
<td>0.0072</td>
</tr>
<tr>
<td>2nd Astig.</td>
<td>4 ±2</td>
<td>0.0080</td>
</tr>
<tr>
<td>2nd Coma</td>
<td>5 ±1</td>
<td>0.0036</td>
</tr>
<tr>
<td>2nd Spher.</td>
<td>6 0</td>
<td>0.0025</td>
</tr>
<tr>
<td>Quadrafoil</td>
<td>4 ±4</td>
<td>0.0078</td>
</tr>
<tr>
<td>2nd Trefoil</td>
<td>5 ±3</td>
<td>0.0051</td>
</tr>
<tr>
<td>3rd Astig.</td>
<td>6 ±2</td>
<td>0.0023</td>
</tr>
<tr>
<td>3rd Coma</td>
<td>7 ±1</td>
<td>0.0018</td>
</tr>
<tr>
<td>3rd Spher.</td>
<td>8 0</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

Garreth Ruane, June 2017

Each Aberration can be mapped to a PM & SM rigid body motions; amplitudes given by Zemax alignment tolerance.
WFE Stability Sensitivities

Zemax Tolerance Analysis of the WFE produced by Rigid Body (6-DOF) Misalignments of the Primary, Secondary and Tertiary Mirrors for the baseline F/2.5 optical design.

<table>
<thead>
<tr>
<th>Primary Mirror or M1</th>
<th>Secondary Mirror or M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX micron</td>
<td>DX micron</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DY micron</td>
<td>DY micron</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DZ micron</td>
<td>DZ micron</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>TX arc-sec</td>
<td>TX arc-sec</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>TY arc-sec</td>
<td>TY arc-sec</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>TZ arc-sec</td>
<td>TZ arc-sec</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

No terms above 2nd order astigmatism contribute any WFE.
Preliminary WFE Stability Tolerances

Using alignment sensitivity matrix, an excel spreadsheet evaluates different alignment allocations to produce a specification for each component. This allocation is based on dynamic analysis. Most important is PM Decenter.

<table>
<thead>
<tr>
<th>ISO RMS Zernikes</th>
<th>VVC4 TOLERANCE</th>
<th>WFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Piston</td>
<td>0.000</td>
<td>0.190</td>
</tr>
<tr>
<td>21 X-Tilt</td>
<td>0.003</td>
<td>0.008</td>
</tr>
<tr>
<td>22 Y-Tilt</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>23 Focus</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>24 X-Astig</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>25 Y-Astig</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>26 X-Coma</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>27 Y-Coma</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>28 Sphere</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>29 X-Trefoil</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>30 Y-Trefoil</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>31 X-2nd Astig</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>32 Y-2nd Astig</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>33 X-2nd Coma</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>34 Y-2nd Coma</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>35 X-2nd Sphere</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>36 X-Quadrafoil</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>37 Y-Quadrafoil</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>38 X-2nd Trefoil</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>39 Y-2nd Trefoil</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>40 X-3rd Astig</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>41 Y-3rd Astig</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>42 X-3rd Coma</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>43 Y-3rd Coma</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>44 X-3rd Sphere</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>45 3rd Sphere</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.2609</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary Mirror or M1</th>
<th>Secondary Mirror or M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX</td>
<td>DX</td>
</tr>
<tr>
<td>DY</td>
<td>DY</td>
</tr>
<tr>
<td>DZ</td>
<td>DZ</td>
</tr>
<tr>
<td>TX</td>
<td>TX</td>
</tr>
<tr>
<td>TY</td>
<td>TY</td>
</tr>
<tr>
<td>TZ</td>
<td>TZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X-Decenter</th>
<th>Y-Decenter</th>
<th>Z-Despace</th>
<th>Y-Tilt</th>
<th>X-Tilt</th>
<th>Z-Rotation</th>
<th>X-Decenter</th>
<th>Y-Decenter</th>
<th>Z-Despace</th>
<th>Y-Tilt</th>
<th>X-Tilt</th>
<th>Z-Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00</td>
<td>4.00</td>
<td>8.00</td>
<td>0.25</td>
<td>0.25</td>
<td>0.50</td>
<td>4.00</td>
<td>4.00</td>
<td>8.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Preliminary Rigid Body Specification

Combining analysis for LOS and WFE stability, can define the maximum amount of rigid body motion allowed by the primary and secondary mirrors. Tertiary Mirror motion is negligible.

<table>
<thead>
<tr>
<th>HabEx Optical Component Rigid Body Stability Tolerance Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
</tr>
<tr>
<td>PM X-Decenter</td>
</tr>
<tr>
<td>PM Y-Decenter</td>
</tr>
<tr>
<td>PM Z-Despace</td>
</tr>
<tr>
<td>PM X-Tilt (Y-Rotation)</td>
</tr>
<tr>
<td>PM Y-Tilt (X-Rotation)</td>
</tr>
<tr>
<td>PM Z-Rotation</td>
</tr>
<tr>
<td>SM X-Decenter</td>
</tr>
<tr>
<td>SM Y-Decenter</td>
</tr>
<tr>
<td>SM Z-Despace</td>
</tr>
<tr>
<td>SM X-Tilt (Y-Rotation)</td>
</tr>
<tr>
<td>SM Y-Tilt (X-Rotation)</td>
</tr>
<tr>
<td>SM Z-Rotation</td>
</tr>
<tr>
<td>TM X-Decenter</td>
</tr>
<tr>
<td>TM Y-Decenter</td>
</tr>
<tr>
<td>TM Z-Despace</td>
</tr>
<tr>
<td>TM X-Tilt (Y-Rotation)</td>
</tr>
<tr>
<td>TM Y-Tilt (X-Rotation)</td>
</tr>
<tr>
<td>TM Z-Rotation</td>
</tr>
</tbody>
</table>

Note #1: VVC-4 requirements are similar to LOS stability.
Note #2: Analysis does not include dynamic WFE from PM.
Design for Stability

Wavefront and Line of Sight Stability has design consequences.

• Mechanical
 o Secondary Mirror Support Structure Dynamic Response – make higher
 o Primary Mirror Dynamic Response – make higher
 o Passive/Active Vibration Isolation – lower acceleration/better isolation
 o Passive/Active Dampening/Control – mass damping

• First Order Scaling
 o WFE & LOS Stability is proportional to frequency\(^2\).
 3.3X increase in frequency response = 10X improvement in stability
 o WFE & LOS Stability is proportional to acceleration.
 1X decrease in acceleration force = 1X improvement in stability
 o WFE & LOS Stability is proportional to mass. (Mass Dampening)
 1X increase in mass = 1X improvement in stability
Design for Stability

Wavefront and Line of Sight Stability has design consequences.

- Thermal
 - PM & SM Mirror CTE – want small and very homogeneous
 - Structure CTE – want small and very homogeneous
 - Passive Thermal Isolation - mass
 - Active Thermal Control – predictive thermal control
Telescope Structure:

Predicted LOS Performance
Dynamic Analysis

To determine OTA dynamic opto-mechanical performance:

• Construct a finite element model of the OTA structure.

• Expose model to expected mechanical disturbances:
 o JWST Reaction Wheel Specification

• Calculate Rigid Body motions of SM and PM relative to OTA coordinate system and relative to each other
 o X-, Y-, Z-despace
 o X-, Y-, Z-rotation

• Are Rigid Body motions less than Specification?

• Apply Vibration Isolation:
 o JWST 1-Hz Passive Vibration Isolation
 o Active Isolation
 o Micro-Thrusters
Mechanical Disturbance Input

JWST reaction wheel specification is input into spacecraft at 4 points for standard pyramid arrangement. This is very conservative worst case.

- Radial force and moment disturbances are applied in 10 degree increments around wheel rotation axis. Result is 144 load cases.
- Radial force and moment disturbances are swept through 360 degree wheel rotation to calculate maximum relative displacement between primary and secondary mirror for each wheel.
- **Critical Damping** is set at 0.05%
- MUF of 4X for > 20 Hz; MUF of 2X for < 20 Hz.
PM/SM Rigid Body Motion vs Disturbance

- PM, SM motion (relative to Fold Mirror) is calculated using MPC (NASTRAN Multi Point Constraint).

- Motions are reported in a local optical coordinate system:
 - PM in CS13,
 - SM in CS12 and
 - Relative PM/SM in CS11.

- Material properties based on quasi-isotropic M46J

M46J Quasi-Isotropic Laminate Properties (25%0, 50%45, 25%90)
Density = 1.58 gram/cm3 (0.057 lb/in3)
28 Hz Telescope Tube Bending Mode moves both SM and PM
28 Hz Mode (JWST Disturbance)

SM motion:
- $\Delta X = 320$ nm
- $\Delta Y = 9,550$ nm
- $\Delta Z = 260$ nm
- $\Theta X = 84$ nrad
- $\Theta Y = 2$ nrad
- $\Theta Z = 16$ nrad

PM motion:
- $\Delta X = 360$ nm
- $\Delta Y = 18,400$ nm
- $\Delta Z = 6,500$ nm
- $\Theta X = 62$ nrad
- $\Theta Y = 1$ nrad
- $\Theta Z = 1$ nrad
69 Hz Bus Modes (JWST Disturbance)

SM motion:
- $\Delta X = 4,840$ nm
- $\Delta Y = 27,600$ nm
- $\Delta Z = 3,150$ nm
- $\Theta X = 189$ nrad
- $\Theta Y = 20$ nrad
- $\Theta Z = 63$ nrad

PM motion:
- $\Delta X = 7,560$ nm
- $\Delta Y = 1,390$ nm
- $\Delta Z = 2,090$ nm
- $\Theta X = 8$ nrad
- $\Theta Y = 28$ nrad
- $\Theta Z = 80$ nrad
Secondary Mirror Rigid Body Motion

SM first mode motion relative to Fold Mirror:

- $\Delta X = 300 \text{ nm at } 28 \text{ Hz}$
- $\Delta Y = 10,000 \text{ nm at } 28 \text{ Hz}$
- $\Delta Z = 200 \text{ nm at } 28 \text{ Hz}$
- $\Theta X = 84 \text{ nrad at } 28 \text{ Hz}$
- $\Theta Y = 2 \text{ nrad at } 28 \text{ Hz}$
- $\Theta Z = 16 \text{ nrad at } 28 \text{ Hz}$

All larger than LOS tolerances:

- $\Delta X = 4 \text{ nm}$
- $\Delta Y = 4 \text{ nm}$
- $\Delta Z = 8 \text{ nm}$
- $\Theta X = 0.5 \text{ nrad}$
- $\Theta Y = 0.5 \text{ nrad}$
- $\Theta Z = 0.5 \text{ nrad}$

Need Vibration Isolation
Primary Mirror Rigid Body Motion

PM first mode motion relative to Fold Mirror:

- \(\Delta X = 11,500 \text{ nm at } 34 \text{ Hz} \)
- \(\Delta Y = 18,400 \text{ nm at } 28 \text{ Hz} \)
- \(\Delta Z = 6,500 \text{ nm at } 28 \text{ Hz} \)
- \(\Theta X = 62 \text{ nrad at } 28 \text{ Hz} \)
- \(\Theta Y = 39 \text{ nrad at } 34 \text{ Hz} \)
- \(\Theta Z = 43 \text{ nrad at } 34 \text{ Hz} \)

Are larger than LOS tolerances:

- \(\Delta X = 4 \text{ nm} \)
- \(\Delta Y = 4 \text{ nm} \)
- \(\Delta Z = 8 \text{ nm} \)
- \(\Theta X = 0.25 \text{ nrad} \)
- \(\Theta Y = 0.25 \text{ nrad} \)
- \(\Theta Z = 0.5 \text{ nrad} \)

Need Vibration Isolation
Motions induced by a JWST RWA Mechanical Disturbance Spectrum exceeds the LOS Tolerances (red lines)
Vibration Isolation

JWST has 2 passive stages producing 70dB of isolation:
- 8-Hz between reaction wheels & spacecraft.
- 2-Hz between spacecraft and OTA.

Passive Isolation
- ~ 10dB/octave
- Damping is important
Passive vs Active Vibration Isolation

Theoretical Isolation Filters:

- **Passive** = 1 Hz, 10% damping
- **Active** = 40 dB initial reduction, 0.8 Hz, 10% damping
- **Micro-Thrusters** initial 60 dB reduction, 2 Hz 50% damping
Passive JWST 2-stage vibration isolation does not achieve requirements.
Telescope Structure LOS Stability: Tolerances

Single stage of active isolation almost achieves requirements.
Telescope Structure LOS Stability: Tolerances

Replacing reaction wheels with micro-thrusters allows baseline telescope to achieve rigid body motion tolerances required for LOS and WFE stability.
Dynamic Wavefront Error:
Mechanical Stability
Primary Mirror Dynamic Wavefront Error

Dynamic PM WFE arises from two sources:

- Mechanical
- Thermal

Mechanical Vibrations have a temporal spectrum:

- Specific vibration frequencies induce harmonic modal response.
- All other vibration frequencies cause inertial response.

These responses produce structural motions that cause:

- Optical mis-alignment aberrations
- Optical component bending and deformations from mount stress
Primary Mirror Dynamic WFE

PM Dynamic Error is proportional to Gravity Sag.

- 1 G acceleration = 1 Gravity Sag
- 1 μG acceleration = 1 μGravity Sag
Primary Mirror Dynamic WFE

To minimize PM Dynamic WFE:

- Design the PM Substrate to be as stiff as possible
- Consider number of Mount Points
- Consider the Mount stiffness and location.

Mounts with more support points have less Gravity Say.

3-Point Mounts will have a Trefoil Signature.

- If Trefoil Gravity sag is 60 micrometers
- And, if Coronagraph requires < 6 pm of Trefoil
- Then mirror acceleration must remain < 1 μN

If Coronagraph is sensitive to Terfoil, consider a 6-point Mount.
Gravity Sag vs Mount Support Points

The more mounts support points, the smaller the gravity sag. And, the smaller the Dynamic WFE.

Plot is for a 180 Hz closed-back ULE mirror.
Dynamic WFE vs Mirror Support Mount

Different mount designs (for 3-point or 6-point mounts attached at the mirror’s edge, 80% or 65% radius) produce different dynamic WFE.

For baseline Flat-Back, Open-Back, Straight-Rib Zerodur 4-m mirror with 1652 kg being driven by 1 N harmonic force from 1 to 400 Hz against a 10,000 kg observatory mass.

<table>
<thead>
<tr>
<th>Location</th>
<th>3 point</th>
<th>6 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>1.071 nm rms at 88 Hz</td>
<td>0.812 nm rms at 105 Hz</td>
</tr>
<tr>
<td>80%</td>
<td>0.725 nm rms at 127 Hz</td>
<td>0.599 nm rms at 119 Hz</td>
</tr>
<tr>
<td>65%</td>
<td>0.303 nm rms at 165 Hz</td>
<td>0.574 nm rms at 108 Hz</td>
</tr>
</tbody>
</table>

For 0.0001 N Micro-Thrusters, dynamic WFE is less than picometer rms.
Max WFE Distortion vs Flexure Stiffness

Maximum dynamic WFE is proportional to flexure stiffness between the mirror and its support system.
For Micro-Thrusters of 0.0001N, dynamic WFE is negligible.

Plot is for a 180 Hz closed-back ULE mirror.
Primary Mirror Dynamic WFE State-of-Art

JWST’s 220-Hz open-back beryllium primary mirror segments on a 3-point mount have a static horizontal G-sag of approximately 200 nm.

When driven at 87.3 Hz, they have a dynamic Astigmatic WFE of 220 nm per G of driving force.

Primary Mirror Assembly

Baseline PMA is open-back 4.2 x 0.42-m 1650 kg Zerodur substrate on 3 point hexapod mount attached to truss.

Primary Mirror Substrate Free-Free Modes:

1st Bending Mode at 80.7 Hz
2nd Bending Mode at 181.4 Hz

First ‘mounted’ bending mode is at 65.2 Hz.
Primary Mirror Assembly Dynamic WFE

Predicted Gravity Sag of baseline 80 Hz open-back Zerodur 4-m off-axis primary mirror on 3 point mount is 62 μm PV

Dynamic WFE depends on mode and driving force.

Gravity Sag = 62 μm PV
33 Hz PM & Bus Mode - Sliding

Patran 2014.1 64-Bit 08-Nov-17 12:26:09
Deform: NM, Mode 2:Freq.=32.945, Eigenvectors, Translational,
33 Hz Mode (JWST Disturbance)

PM motion:
- $\Delta X = 1,050$ nm
- $\Delta Y = 2,610$ nm
- $\Delta Z = 345$ nm
- $\Theta_X = 3$ nrad
- $\Theta_Y = 3$ nrad
- $\Theta_Z = 4$ nrad

WFE $= 7,000$ nm PV

Microthrusters will reduce dynamic WFE to < 10 pm
34 Hz PM & Bus Mode – Sliding & Rocking

Patran 2014.1 64-Bit 08-Nov-17 12:27:37
Deform: NM, Mode 3: Freq. = 34.054, Eigenvectors, Translational,

default_Deformation:
Max 3.06-001 @Nd 61001!
Frame: 1
Scale = 1.00+000
34 Hz PM & Bus Mode – Sliding & Rocking

PM motion:
• $\Delta X = 11,500$ nm
• $\Delta Y = 1,760$ nm
• $\Delta Z = 743$ nm
• $\Theta_X = 5$ nrad
• $\Theta_Y = 39$ nrad
• $\Theta_Z = 43$ nrad

WFE $= 40,000$ nm PV

Microthrusters will reduce dynamic WFE to < 50 pm

(Need to remove Tilt)
44 Hz PM & Bus Mode – Rocking

Deform: NM, Mode 6: Freq.=44.061, Eigenvectors, Translational,
44 Hz PM & Bus Mode – Rocking

PM motion:
- $\Delta X = 4,230$ nm
- $\Delta Y = 220$ nm
- $\Delta Z = 15$ nm
- $\Theta X = 7$ nrad
- $\Theta Y = 330$ nrad
- $\Theta Z = 23$ nrad
Dynamic Wavefront Error:

Thermal Stability

Thermal changes produce structural and component motions as a result of material response (bulk CTE and CTE homogeneity)
Static Thermal WFE

0.5 m thick closed-back ULE mirror
Radial Gradient depends on view factor and side insulation.

Temperature gradient
Keeping Front Surface > 273K
20C Axial; 10C Radial

SFE from isothermal with defocus
SFE = 977 nm PV; 288 nm RMS

SFE from with defocus removed
SFE = 128 nm PV; 24 nm RMS
Dynamic Thermal WFE Video

Passive Wavefront Error from 1 hour exposure.
Sun angle changes by 0.0411 degree per hour.

All Errors

Power Removed

WFE/1-hour = 233 pm PV
WFE/20-min = 28 pm

WFE/1-hour = 101 pm PV
WFE/20-min = 13 pm
Dynamic Thermal WFE

Primary mirror responds to dynamic external thermal load

Required stability (10 pm per 10 min) can be achieved by controlling the telescope thermal environment.
4m Aperture Transient WFE Video
Thermal Stability

The ability to achieve any required wavefront stability depends on:

- Mirror Substrate Properties: CTE, Thermal Mass, Conductivity, etc.
- Thermal Environment Controllability
- Control Period.

![Graph showing shroud control period vs. shroud controllability](image)

Curve follows the function:

\[T = \gamma / \alpha C \]

Where:
- \(T \) is the shroud control period
- \(C \) is the shroud controllability
- \(\gamma \) is the maximum RMS WFE Range (10pm)
- \(\alpha \) depends upon the telescope design (0.00208 nm/(mK*s) for the analyzed telescope)

3-sigma Test Results, 165.00, 8.00
Conclusions
Conclusions

HabEx requires an OTA with unprecedented stability.

Baseline design rigid body tolerances ‘Closes’ for LOS and WFE Stability using TRL9 technology

Dynamic WFE Stability analysis is on-going.

Baseline Design may require Predictive Thermal Control
BACKUP: WFE Specification
Diffraction Limit WFE

Diffraction Limit of 500 requires total system WFE ~ 38 nm ms

<table>
<thead>
<tr>
<th>Component</th>
<th>WFE (nm rms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observatory</td>
<td>40</td>
</tr>
<tr>
<td>Instruments</td>
<td>15</td>
</tr>
<tr>
<td>Telescope</td>
<td>36</td>
</tr>
<tr>
<td>Pointing Control</td>
<td>10</td>
</tr>
<tr>
<td>PMA</td>
<td>20</td>
</tr>
<tr>
<td>SMA</td>
<td>16</td>
</tr>
<tr>
<td>Stability</td>
<td>20</td>
</tr>
<tr>
<td>Assemble, Align</td>
<td>16</td>
</tr>
<tr>
<td>Monolithic PMA</td>
<td>10 (rms)</td>
</tr>
<tr>
<td>Thermal</td>
<td>5</td>
</tr>
<tr>
<td>Polishing</td>
<td>7.1</td>
</tr>
<tr>
<td>Gravity/Mount</td>
<td>5</td>
</tr>
<tr>
<td>Segmented PMA</td>
<td>10 (rms)</td>
</tr>
<tr>
<td>Thermal</td>
<td>5</td>
</tr>
<tr>
<td>Polishing</td>
<td>5</td>
</tr>
<tr>
<td>Segment Phasing</td>
<td>5</td>
</tr>
<tr>
<td>Gravity/Mound</td>
<td>5</td>
</tr>
</tbody>
</table>

Spatial Frequency Band Limited Primary Mirror Surface Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>PSD Slope 2.0</th>
<th>PSD Slope 2.25</th>
<th>PSD Slope 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Surface Error</td>
<td>8.0 nm rms</td>
<td>8.0 nm rms</td>
<td>8.0 nm rms</td>
</tr>
<tr>
<td>Figure/Low Spatial (1 to 4 cycles)</td>
<td>5.2 nm rms</td>
<td>5.5 nm rms</td>
<td>5.8 nm rms</td>
</tr>
<tr>
<td>Mid Spatial (4 to 60 cycles)</td>
<td>5.8 nm rms</td>
<td>5.6 nm rms</td>
<td>5.4 nm rms</td>
</tr>
<tr>
<td>High Spatial (60 cycles to 10 mm)</td>
<td>1.4 nm rms</td>
<td>1.0 nm rms</td>
<td>0.7 nm rms</td>
</tr>
<tr>
<td>Roughness (10 mm to < 0.001 mm)</td>
<td>0.6 nm rms</td>
<td>0.3 nm rms</td>
<td>0.2 nm rms</td>
</tr>
</tbody>
</table>
Shaklan shows that a UVOIR mirror similar to Hubble (6.4 nm rms) or VLT (7.8 nm rms) can meet the requirements needed to provide a $< 10^{-10}$ contrast ‘dark hole’.

- If PM is conjugate with the DM, then PM low-order errors are compensated by DM.
- Recommends < 4 nm rms above 40 cycles
- Both HST & VLT surface figure error is so small enough that there is negligible Contrast reduction from frequency folding
- Because VLT is larger, stiffer and not light-weighted, it is actually smoother at frequencies of concern

Shaklan & Green, “Reflectivity and optical surface height requirements in a coronagraph”, Applied Optics, 2006
PM Manufacturing Specification

Define band-limited or spatial frequency specifications

- Figure/Low (1 to SF1 cycles/aperture)
- Mid Spatial (SF1 to SF2 cycles/aperture)
- High Spatial (SF2 cycles/aperture to 10 mm)
- Roughness (10 mm to < 1 micrometer)

Assume that Figure/Low Frequency Error is Constant

Key questions is how to define SF1 and SF2

Also, what is proper PSD Slope
Low/Mid Spatial Frequency Specification

To best of my knowledge, there is no precise definition for the boundary between Figure/Low and Mid-Spatial Frequency. Have seen values ranging from 4 cycles to 10 cycle. Many assert that Zernike Polynomial Set defines Figure/Low Harvey defines Figure/Low errors as removing energy from core without changing shape of core, and Mid errors as changing the shape of the core:

We choose 4 cycles
Mid/High Spatial Frequency Specification

Exo-Planet Science requires a Deformable Mirror to correct wavefront errors and create a ‘Dark Hole’ for the coronagraph.

A 64 x 64 DM can theoretically correct spatial frequencies up to 32 cycles per diameter to create the ‘dark hole’ but in practice, the limit is approx 20 cycles per diameter.

3X aliasing can cause spatial frequency errors to put energy into the ‘dark hole’; need smooth WFE up to 60 cycles/diameter.

Higher spatial frequencies scatter energy outside of ‘dark hole’.

We will use 60 cycles as the Mid/High boundary.

HabEx is planning to use 96 x 96 DM (or larger) to get as large of an OWA as possible. Thus, PM must be smooth to maybe 100 cycles per diameter.
Intuition Cross-Check

JWST WFE Stability spec < 13 nm rms

Because of dampening, a warm JWST may have WFE < 2 nm rms.

HabEx Design SM Tower is ~28 Hz or ~4X higher frequency and ~16X lower amplitude than JWST.

Mass dampening gives 2X reduction.

Total SM WFE ~ 25 pm rms (coma)

JWST PM is 17 Hz, HabEx PM is 120 Hz (Zerodur) to 180 Hz (ULE) or 7X to 10X higher frequency and 50X to 100X lower amplitude.