Total Dose Survivability of Hubble Electronic Components

M.A. Xapsos¹, C. Stauffer², T. Jordan³, C. Poivey⁴, D.N. Haskins¹, G. Lum⁵, A.M. Pergosky⁶, D.C. Smith⁵, and K.A. LaBel¹

¹NASA Goddard Space Flight Center, Greenbelt, MD, USA
²AS&D, Inc., Greenbelt, MD, USA
³EMP Consultants, Gaithersburg, MD, USA
⁴ESA-ESTEC, Noordwijk, The Netherlands
⁵Lockheed Martin, USA
⁶SAIC, USA

Presented by Michael Xapsos at the NASA Space Exploration & Space Weather Workshop, NASA GSFC, Greenbelt, MD, September 26-27, 2017
Acronyms

- AE-8 – Aerospace Electron Model-8
- AP-9 – Aerospace Proton Model-9
- CEASE – Compact Environmental Anomaly Sensor
- CMOS – Complementary Metal-Oxide-Semiconductor
- HST – Hubble Space Telescope
- IR - infrared
- JWST – James Webb Space Telescope
- NOVICE – Numerical Optimizations, Visualizations, and Integrations on CAD/CSG Edifices
- CAD – Computer Aided Design
- CSG – Constructive Solid Geometry
- PET – Proton Electron Telescope
- RAM – Random Access Memory
- ROM – Read Only Memory
- RPS – Relativistic Proton Spectrometer
- SAMPEX – Solar Anomalous and Magnetospheric Particle Explorer
- TID – Total Ionizing Dose
- TSX-5 – Tri-Service Experiments Mission 5
- 3-D – three-dimensional
Outline

• Introduction
• HST Lifetime Planning
• Total Dose Analysis and Results
• Summary

Credit: http://www.spacetelescope.org
Introduction

- Hubble Space Telescope (HST) deployed from Discovery April 25, 1990
 - Low Earth Orbit, 569 km altitude, 28.5° inclination
 - First telescope designed to be serviced in space
- Advantages in space:
 - No atmospheric distortions
 - Little background light
 - Portions of ultraviolet and infrared spectra seen, not observable with Earth-based telescopes

Credit: http://hubblesite.org/
The Universe, Looking Back in Time

Credit: http://hubblesite.org/
Service Mission 1
Corrective Optics for Spherical Aberration

Galaxy M100, Before
Galaxy M100, After

Credit: http://hubblesite.org/
HST Lifetime Planning

- Fifth and final HST servicing mission occurred in May 2009
- James Webb Space Telescope (JWST), launches in October 2018
 - Will complement and extend HST discoveries with greater IR wavelength coverage and sensitivity
 - Desirable that HST and JWST operate simultaneously
- After more than 27 years in orbit, main radiation concern for HST is a hard failure due to total ionizing or non-ionizing dose.
 - Objective is to evaluate these possibilities out to the year 2020 for HST life extension initiatives and contingency planning
Total Dose Analysis
Van Allen Belts

- Dose comes mainly from trapped p, with smaller contribution from trapped e
- Must account for solar cycle dependence of fluxes
- Boeing Trapped Proton Model-1 used
 - AP9 used to extend energy range to 2 GeV (RPS instrument on Van Allen Probes)
 - Calculations showed good agreement with SAMPEX PET and TSX-5 CEASE data
- AE8 used for trapped electrons
 - Results insensitive to electron model

Presented by Michael Xapsos at the NASA Space Exploration & Space Weather Workshop, NASA GSFC, Greenbelt, MD, September 26-27, 2017
Total Dose Analysis
Radiation Transport

- NOVICE code used for radiation transport
 - Interfaces with CAD models
 - Adjoint (reverse) Monte Carlo simulation greatly increases calculation efficiency
- Lockheed Martin spacecraft CAD model imported
- Extensive review of subsystem and instrument mechanical drawings
 - Implemented using correct dimensions, wall thicknesses, masses and placement
- TID exposure tracked accounting for servicing missions

HST NOVICE Radiation Model

Presented by Michael Xapsos at the NASA Space Exploration & Space Weather Workshop, NASA GSFC, Greenbelt, MD, September 26-27, 2017
Expected Mission Doses by 2020
66 Subsystems / Instruments

5 krad(Si) parts
(Transponders)

Mission Part Requirements:
5 – 15 krad(Si)
Parts Discussion

• HST Parts and Control Plan specifies TID hardness of 5 - 15 krad(Si)
 – Many selected parts substantially exceed this

• Initial HST development occurred in 1980s
 – Bipolar technologies generally more total dose hard than CMOS
 – Literature and parts list reviews showed total dose concerns were primarily CMOS parts
 – Biggest concern is Hughes Aircraft CMOS parts in transponders - microprocessors, RAM and ROM
 ▪ Will be exposed to ~2X their total dose hardness by 2020

• Factors favoring part survivability:
 – Annealing of parts for many years in space not accurately accounted for with ground test protocol
 – Parts may operate satisfactorily outside specs
Summary

- HST has been through:
 - 27 years of mission operations
 - 5 servicing missions
 - 3 generations of scientific instruments
 - 14,000 electronic parts
 - Procured by 5 generations of parts engineers
 - Protected by 12,200 kg of spacecraft mass / shielding
- HST still operating satisfactorily

To Be Continued.....
Questions?

Credit: http://hubblesite.org/

Presented by Michael Xapsos at the NASA Space Exploration & Space Weather Workshop, NASA GSFC, Greenbelt, MD, September 26-27, 2017