Assessing Tactical Scheduler Options for Time-Based Surface Metering

Shannon Zelinski
Robert Windhorst

NASA Ames Research Center

Time-Based Surface Metering

- Improve efficiency
- Improve predictability

Tactical Scheduler

- earliest pushback times
- target pushback times

uncertainty

- hold advisories
- pushback clearance

- taxi and departure clearances
- ready for pushback

Airline Ops

ATCT Control

Pilot

Ramp Control
ATD-2 Parallel Efforts

- Field Demonstration
 - Demonstrate viability of ATD-2 tools in the real operating environment

- Human-In-The-Loop simulation
 - Develop/test human factors interfaces and procedures

- Fast-time simulation
 - Extrapolate field results
 - Refine scheduler for future phases of field demonstration
 - Easily adapt concepts to other airports
Objective

- Benchmark evaluation of the ATD-2 tactical scheduler in fast-time simulation
- Parametric analysis of taxi time delay buffer mitigation of surface congestion uncertainty
Outline

Tactical Scheduler

Fast-Time Simulation

Evaluation Results
Tactical Scheduler

- Trajectory Prediction
 - Earliest Pushback Time
 - Earliest Runway Time

- Runway Scheduling
 - Target Runway Time
 - Target Pushback Time

- Advisory Generation
 - Target Pushback Time

- Flight state and intent
- Separation constraints
- Taxi time delay buffers

Surface congestion
Advisory Generation

Target Pushback Time = Target Runway Time - Unimpeded Transit Time

Surface Congestion

Advisory Generation

- A accounts for congestion along route
- B accounts for congestion at runway

Taxi Time Delay Buffers
Outline

Tactical Scheduler

Fast-Time Simulation

Evaluation Results
Fast-Time Simulation

Surface Operations Scheduler & Simulator (SOSS)

Charlotte Douglas International (CLT)

South flow configuration
Traffic Scenario

4 hours from 3/11/2016, high demand, low weather impact
Traffic Scenario

4 hours from 3/11/2016, high demand, low weather impact

- 18L dep
- 18C dep
- 18C arr
- 18L arr

ops per 15-min

simulation time (min)
Traffic Scenario

4 hours from 3/11/2016, high demand, low weather impact

ops per 15-min

simulation time (min)
Simulation Parameters and Variables

- **SOSS**
 - 0.5 sec time step
 - Surface congestion uncertainty modelled

- **Tactical Scheduler**
 - called every 10 sec
 - Delay Buffers
 - A = 1.05
 - B = {0, 1, 2, …} min

Evaluation Metrics
- Departure Delay
- Runway Time Prediction
- Throughput Prediction
- Departure Queue
Departure Delay Results

Best job moving delay to gate without increasing total much

- AMA
- Ramp
- Gate
- Total

<table>
<thead>
<tr>
<th>taxi time buffer B (min)</th>
<th>delay (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
Runway Time Prediction Results

- Departures are late on average
- Predictability (stdev) worsens quickly as taxi time buffer is increased
Throughput Prediction Results

Predictability (stdev) independent of buffer

Better to under predict throughput slightly to keep pressure on the runways
Departure Queue

<table>
<thead>
<tr>
<th>Departure queues</th>
<th>Number of departures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp</td>
<td>In ramp</td>
</tr>
<tr>
<td>AMA</td>
<td>In Active Movement Area (AMA)</td>
</tr>
<tr>
<td>Taxi = Ramp + AMA</td>
<td>In ramp and AMA</td>
</tr>
<tr>
<td>Queue</td>
<td>in line from runway within 200m of each other</td>
</tr>
</tbody>
</table>
Departure Queue Results

Maximum queue lengths for 18L (0-120 min)

- Taxi, AMA, and Queue increase with buffer
- Taxi begins to saturate
- Queue > AMA when line extends into the ramp
- Ramp saturates quickly and does not increase with taxi delay buffer
Maximum Queue Length Example

Runway 18L

\[B = 10 \text{ min} \]

\[q_{\text{AMA}} = 11 \]

\[q_{\text{line}} = 12 \]
Maximum queue lengths for 18L (0-120 min)
Summary and Conclusion

<table>
<thead>
<tr>
<th>Departure Delay</th>
<th>Move as much delay to gate without increasing total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runway Time Prediction</td>
<td>Keep buffers small for better predictability</td>
</tr>
<tr>
<td>Throughput Prediction</td>
<td>Under-predict slightly to maintain pressure on runways</td>
</tr>
<tr>
<td>Departure Queue</td>
<td>Avoid saturating the Taxi and AMA queues</td>
</tr>
</tbody>
</table>

Buffer B

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

Recommend buffers between 2 and 5 minutes for future simulations.
Future Work

- Add other uncertainties
- Add traffic management initiatives
- Add airline priority
Questions

Shannon.j.zelinski@nasa.gov