Development of Storage Methods for Saccharomyces Strains to be Utilized for *In situ* Nutrient Production in Long-Duration Space Missions

Natalie Ball, KBR Wyle
Hiromi Kagawa, SETI Institute
Aditya Hindupur, KBR Wyle
John Hogan, NASA Ames Research Center
From Sea to Space

Nutrient deficiencies occur as a result of limited resupply of fresh foods during long-duration expeditions.
Nutrient Degradation Over Time

Nutritional quality of 109 space food items tested over three years at ambient temperature storage

<table>
<thead>
<tr>
<th>Nutrients below the recommended intake post-processing</th>
<th>Calcium</th>
<th>Potassium</th>
<th>Vitamin K</th>
<th>Vitamin D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamins that may degrade to lower than the recommended daily intake after three years</td>
<td>Vitamin B1</td>
<td>Vitamin C</td>
<td>Vitamin B9*</td>
<td></td>
</tr>
</tbody>
</table>

* Vitamin degradation dependent on food source

Microorganisms for *In situ* Production of Nutrients

In order for *In situ* production of nutrients to occur, microorganisms must maintain high viability during long-duration storage.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Recommended Dietary Intake (RDI)</th>
<th>Published Nutrient Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C</td>
<td>75 – 90 mg/day</td>
<td>~100 mg/L³</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>90 – 120 μg/day</td>
<td>85 μg/g wet weight⁴</td>
</tr>
<tr>
<td>Beta-carotene (provitamin A)</td>
<td>6 – 16 mg/day</td>
<td>5.9 mg/g dry cell weight⁵</td>
</tr>
</tbody>
</table>

Citations: ²Code of Federal Regulations, title 21, Sec 101.9, ³Sauer et al., 2004, ⁴Yanagisawa and Sumi, 2005, ⁵Verwaal et al., 2007
Objective: To engineer a GRAS (generally regarded as safe) microorganism for the *In situ* production of needed dietary nutrients for long-duration space missions.
Yeast as *In-situ* Production Platform

- **S. cerevisiae**
 - History of Metabolic Engineering
 - Expression Platform Organism
 - Spore Former

- **S. boulardii**
 - Same Engineering Tools can be Applied
 - Probiotic
 - Vegetative Cells

S. cerevisiae is the organism used as the expression platform in-situ production.
Effects of Dehydration on Yeast

- Water evaporation
- Contact with reactive oxygen species (ROS)
- Substitution of water with air
- Dehydrated Cell

- Increase in osmolarity
- Membrane disruption
- Increased intracellular crowding
- Protein aggregation and misfolding
- ROS induced lipid peroxidation and DNA damage

Preservation of Spores and Vegetative Cells

Drying Methods
• Lyophilization (freeze-dry)
• Vacuum (no freezing involved)
• Air-dry

Protectants
• The following protectants are identified as edible and have proven successful:
 – Trehalose, skim milk, monosodium glutamate
 – Proline
 – Sorbitan monostearate
 – Lactose

Storage
• Stored in reduced oxygen environment at room temperature or 4 °C
Methods Flowchart

Vegetative Cells: *Saccharomyces cerevisiae* and *boulardii*

- **Desiccation**
 - Lyophilization
 - Air-drying

- **Storage**
 - Samples stored in an anaerobic chamber in 96 well plates at room temperature

- **Revival**
 - Rehydrated in dilute PBS for 30 minutes, serially diluted, plated, and CFU counted

Spores: *Saccharomyces cerevisiae*

- **Desiccation**
 - Lyophilization
 - Vacuum
 - Air-dry

- **Storage**
 - Sealed in bags without oxygen, and stored at room temperature or 4 °C

- **Revival**
 - Measured by optical density
 - Measured by percent change in biomass
Effect of Drying Methods on Spore Survival

- Protectants did not affect spore survival under vacuum at room temperature
- Protectants increased viability of lyophilized spores
- Lyophilization was overly damaging to spores when compared to vacuum
Optimizing Vegetative Cell Viability

Vegetative cells were allowed to grow in rich media for 3, 5, and 7 days to determine if time spent in stationary phase had an effect on viability after desiccation.

Tested with trehalose as a protectant
Viability of Spores Stored at 4 ºC

- Spores stored at room temperature or at 4 ºC
- No significant difference in viability between spores stored at room temperature vs. 4 ºC after six months
S. cerevisiae Spore Storage

A. Sporulation at room temperature
B. Spores dehydrated in a desiccator
C. Spores dehydrated at 4 °C
D. Spores stored in water
E. Spores dehydrated by vacuum

- No spores survived when stored in water after 6 months
- Minimal decline in viability for spores stored under all parameters
Three-year Spore Storage Study

Spore Viability Measured by Growth Curve

- Initial
- 1 Week
- 1 Month
- 3 Months
- 6 Months
- 1 year

Optical Density 600 nm

Minutes

Spore Viability Measured by Change in Biomass

Percent Change in Biomass

One Week
One Month
Three Months
Six Months
One Year

* Represents 10% less final biomass than samples stored for one week
Conclusions from Storage Study – 1 Year

• Spores have maintained a relatively high viability over time

• After one year there has only been a 10% decline in overall final biomass

• In the event cell viability declines to undesirable levels, a higher starting biomass can be added to the package to offset cell loss over time.
Anhydrobiotic Engineering

Trehalose

- Long-term desiccation leads to loss of molecular chaperone function
- Trehalose may act as a replacement molecular chaperone by inhibiting protein aggregation and misfolding

Traditional Pathway:

\[
\text{Trehalose} \rightarrow \text{Trehalase (NTH1)} \rightarrow \text{Glucose}
\]

Pathway with Engineered NTH1 Knockout:

\[
\text{Trehalose} \rightarrow \text{Trehalase (ΔNTH1) Knockout} \rightarrow \text{Increased Trehalose in Cell}
\]

Engineering Desiccation Tolerance

- After three months the wild type *S. boulardii* strain shows a significant decline in viability compared to the NTH1 deletion strain.
- Longer term data is needed to verify increased desiccation tolerance over time.
Summary

• *S. cerevisiae* spores have maintained high viability over one year

• Lyophilization was dropped as a drying method for spores as the freezing step is likely overly damaging

• Air-drying vegetative cells results in the highest initial viability directly after drying

• Early stationary phase appears to be the optimal time to prepare yeast for desiccation

• NTH1 knockout may increase long-duration survival of *S. boulardii* in a desiccated state although longer term storage data is needed to verify
Acknowledgements

I would like to thank the rest of my team at the NASA Ames Research Center for their contributions to this research and this paper.

Funded by

NASA AES, Foundational Domain, Synthetic Biology Applications
References

