Technology and Tool Development to Support Safety and Mission Assurance

Ewen Denney and Ganesh Pai

ISRDS 2
SGT Technology Day, Houston, TX
Oct. 30, 2017
Summary

• How we are (and have been)

 – Defining the state of the art
 ▪ Foundational research in assurance technology

 – Pushing the state of the practice
 ▪ Application of research to enable application of emerging technologies
 ▪ Unmanned aircraft systems (UAS) missions

 – Developing supporting tools and technologies
 ▪ AdvoCATE (Assurance Case Automation Toolset)
 ▪ Proven application in unmanned aircraft systems (UAS) missions
Outline

• Motivation
• Assurance Cases
• Example
• Tool support
• Outlook
Outline

- Motivation
- Assurance Cases
- Example
- Tool Support
- Outlook
Research Motivation

• High-hazard industries are moving to *active safety management*
 – Safety management system (SMS) in aviation
 – Need to
 ▪ Unify reasoning about technical aspects of safety
 ▪ Support safety-related decision making

• *Goals-based* regulation is attractive for novel applications
 – When performance standards are absent
 ▪ Unmanned aircraft systems (UAS), Autonomous systems, …
 – Increases flexibility for regulated entity
 – Evidence-based assurance \(\rightarrow\) safety case

Foundational research in languages, methodology, and automation support
Practical Motivation

• **MIZOPEX (2013)**
 – NASA Earth science mission with Sierra UAS off Alaska coast
 – Flight in combination of US National Airspace + Oceanic Airspace
 – Use of air defense radar for detect and avoid
 – Project needed FAA approval through submission of *safety case* – a detailed safety justification

• **UTM (2016 – Ongoing)**
 – Fleet of small UAS demonstrating low-altitude traffic management system
 – Flight in US national airspace, over sparsely populated land
 – Use of ground-based radar for detect and avoid
 – Project needed FAA approval through submission of *safety case*

Practical application of our research solutions in response to customer needs
• Motivation

• Assurance Cases

• Example

• Tool support

• Outlook
‘A safety case is a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is safe for a given application in a given operating environment’

- UK MOD, DS-00-56 Issue 4 (2007)

- Essentially, a safety risk management artifact
 - Other compatible definitions and guidance on content
 - Based on application domain, standard, regulatory paradigm, etc.
 - FAA: Order 8900.1, FSIMS, vol. 16, UAS
 - NAVAIR: Instruction 13034.4
 - ICAO and Eurocontrol: Safety case development manual
 - Automotive: ISO 26262
 - FDA: Infusion pumps total product lifecycle guidance
Safety Case Content

- FAA (8900.1, FSIMS, vol. 16, UAS)
 - Core content
 - Environment (airspace system) description
 - System description and system change description
 - Airworthiness description of affected items
 - Aircraft capabilities and flight data
 - Accident / incident data
 - Pilot / crew roles and responsibilities
 - Hazard analysis and details of risk analysis, risk assessment, and risk control
 - Emergency and contingency procedures
 - Safety risk management plan
 - Hazard tracking and treatment
 - Safety performance monitoring
Safety Case Content

• In general,
 – Explicit statement of safety assurance objectives
 – Heterogeneous evidence
 ▪ Datasheets, design and analysis, verification, operational testing,…
 – Structured argument
 ▪ Capturing rationale why evidence supports the claims made

• Additionally,
 – Safety architecture providing a risk basis
 – Hazard log and hazard analyses
 – Evidence model
 – Monitoring and update
Assurance Cases

‘A documented body of evidence that provides a convincing and valid argument that a specified set of critical claims regarding a system’s properties are adequately justified for a given application in a given environment’

- MITRE (2005)

‘A reasoned and compelling argument, supported by a body of evidence, that a system, service, or organization, will operate as intended for a defined application, in a defined environment’

- Goal Structuring Notation Standard (2011)

‘A structured set of arguments and a body of evidence showing that an (information) system satisfies specific claims with respect to a given quality attribute’

- National Institute of Standards and Technology (2013)

Generalization of safety cases to other assurance properties: security, dependability, …
Safety Risk Management Approach

System Analysis
Concept of Operations, System/change description, Regulations, …

HazID
Hazard Analysis
Operational, functional, …

Risk Analysis
and Assessment
Risk scenarios, design targets, risk evaluation

Risk Control
Prevention / Preventative Barriers
Threats / Causes / Initiating Events or States

Barrier Modeling – Abstract Safety Architecture

Assurance Rationale
(Structured Argument)
Assurance claims, strategies, context, rationale, …

Evidence Artifacts
Design, Analysis, Verification Testing,

Operational Safety Assurance
(Monitoring and Update)
Safety performance measures, monitors, …

Operational Evidence
Verification of safety performance targets
Assumption corroboration
Hazard tracking, Precursors, …

Mitigations
Safety requirements
Barrier and Control functions

Motivation
• ASSURANCE CASES
• Example
• Tool Support
• Outlook

SGT Technology Day. Houston, TX
This Talk

System Analysis
Concept of Operations,
System/change description,
Regulations, …

HazID

Hazards
Operational, functional, …

Risk Analysis
and Assessment

Design target

Risk scenarios, design targets,
risk evaluation

Barrier Modeling – Abstract Safety Architecture

Recovery / Mitigative
Barriers

Prevention / Preventative
Barriers

Threats / Causes
Initiating Events or States

Hazard

Loss of Control State

Accident / Loss / Harmful
States or Events

Barrier Modeling

Safety Control

Mitigations
Safety requirements
Barrier and Control functions

Operational Evidence
Verification of safety performance targets
Assumption corroboration
Hazard tracking, Precursors, …

Mitigation of Flight-phase hazards
Mitigation of airspace encounter with GA aircraft penetrating containment boundary

Evidence Artifacts
Design, Analysis, Verification
Testing,

Operational Safety Assurance
(Monitoring and Update)

Operational Safety Assurance
(CONOPS)

Evidence Artifacts
Implementation

Motivation

ASSURANCE CASES

Example

Tool Support

Outlook

ASSURANCE CASES

Example

Tool Support

Outlook

Safety Performance measures, monitors, …

Safety Control

Mitigations
Safety requirements
Barrier and Control functions

Operational Evidence
Verification of safety performance targets
Assumption corroboration
Hazard tracking, Precursors, …

Mitigation of Flight-phase hazards
Mitigation of airspace encounter with GA aircraft penetrating containment boundary

Evidence Artifacts
Design, Analysis, Verification
Testing,
• Collection of barrier models providing a *risk basis*
 – Collection of all factors affecting risk
 – Model for risk qualification/quantification

Event chain / accident trajectory

Barrier compromise/breach
Bow Tie Diagram (BTD)

- Motivation
- ASSURANCE CASES
- Example
- Tool Support
- Outlook

Prevention Barrier
- Prevention Control (2)
 - Barrier Integrity: 0.999

Threat
- Likelihood: Probable

Escape Factor

Prevention Barrier
- Prevention Control (1)
 - Barrier Integrity: 0.99

Top Event
- IR: 5B (Low)
- RR: 5E (Low)

Consequence
- IL: B (Probable)
- IS: 5 (Minimal)
- IRL: 5B (Low)
- RL: E (Extremely Improbable)
- RS: 5 (Minimal)
- RRL: 5E (Low)

Recovery Barrier
- Recovery Control
 - Barrier Integrity: 0.99
Example: Loss of Separation

Hazard: Airborne UAs operating BVLOS within the OR

Consequence: Midair collision (MAC) between UA and non-cooperative manned aircraft

Top Event: Airborne conflict from a loss of separation

IR: 1B (High)
ON: 1E (Medium)

Barrier & Control

Escalation Factor

Loss of voice communication capability

- Safe nominal operating procedures
 - All RF frequencies to be utilized are verified to be free of interference through frequency use approval. A spectrum analyzer deployed during operations provides confirmation that there is no RF interference

- Spectrum Management
 - Prior to each flight, all RF links, including equipment and signals for voice communication are tested to verify that they are performing as expected, without interference

- Redundancy
 - Multiple aviation band VHF radios provide redundant voice communication capability

Escalation Factor Barriers

Ground-based Surveillance

Radar scans the airspace and RO monitors the surveillance display, to detect and track intruder heading, altitude, and speed

Barrier Integrity: 0.99

Avoidance Maneuvers

Based on the encounter geometry, i.e., the location of the UA relative to the intruder / and a DCP / FTP, the RSO directs the PIC to initiate an appropriate avoidance maneuver (divert and land immediately, terminate), who commands it via the GCS.

Barrier Integrity: 0.99

Independent Flight Abort

The PIC invokes an independent flight abort capability immediately shutting off engines and halting forward motion

Barrier Integrity: 0.999

Emergency Procedures

RSO declares an emergency, notifies the relevant ATC facilities, and broadcasts on CTAF/UNICOM to notify intruding aircraft pilot

Barrier Integrity: 0.5

Individual Pilot Actions

- Pilot of non-cooperative aircraft visually acquires the UA and takes an evasive maneuver

Midair collision (MAC) between UA and non-cooperative manned aircraft

- IL: B (Probable)
- IS: 1 (Catastrophic)
- IN: 1B (High)
- RL: E (Extremely improbable)
- RB: 1 (Catastrophic)
- VHIL: 1E (Medium)

Operations in inclement weather and strong wind

Safe nominal operating procedures

- Continued monitoring of weather conditions to ensure that VMC conditions persist for the duration of flight

Safe nominal operating procedures

- Operations are conducted in VMC, when the stricter weather minimums for visibility and cloud ceiling suitable for VFR operations in Class E airspace apply

Motivation

ASSURANCE CASES

Example

Tool Support

Outlook
Rationale Capture

Safety / Dependability Claims

Chain of reasoning

Developed claims

Documentation and Details

Item of Evidence

Goal Structuring Notation (GSN)

- Motivation
- ASSURANCE CASES
- Example
- Tool Support
- Outlook
Example Structured Argument

- Motivation
- ASSURANCE CASES
- Example
- Tool Support
- Outlook

J1: LiPo battery system failures are characterized by the different failure modes

G1: LiPo battery system failures are acceptably tolerated

C1: FMEA of LiPo Battery System

S1: Show toleration over all identified failure modes

S2: Usage of redundancy

G2: Battery system short circuits are eliminated

A1: Independence in failures of the primary and the spare battery systems

G3: Thermal runaway of the battery packs is mitigated

E1: Results of short circuit analysis
Tiered Assurance Framework

<table>
<thead>
<tr>
<th>Tier</th>
<th>Core Assurance Concerns and Scope</th>
<th>Additional Assurance Qualities</th>
</tr>
</thead>
</table>
| Safety Objectives | **System Safety**
- Safe concept (safety designed-in)
- Safety in design
- Safety in implementation
- Safe transition into service
- **Safety in operations**
 - TLOS / Acceptable level of risk
 - Safe disposal
Due diligence
Reduction of risk
- ALARP
- SFAIRP
- ASARP | Compliance with Aviation Regulations
Processes;
- Maturity, ...
Input data;
People;
- Competence, ...
Method and Tools;
- Qualification, ...
Safety management system;
Lifecycle |
| 1 | **Overall Assurance**
All hazards / hazard risk statements, i.e., combination of hazardous situation, hazard release.
All relevant consequences across all BTDs. | All applicable regulatory requirements
Coverage;
Independence of threats;
Effectiveness;
... |
| 2 | **Profile of Risks**
For each hazard, all risk scenarios (consequences), e.g., midair collision, near midair collision, ground collision, ...
Specific consequence, e.g., midair collision
All causal chains, threats, and dangerous interactions across all hazards. | Coverage (function, environment, interactions, scenarios, ...);
Independence;
... |
| 3 | **Individual Risks**
Specific risk scenario, i.e., causal chain of consequence, top event, threats, causes/precursors
Applicable system of barriers / safety measures | Depth;
Independence;
Proactiveness: Prevention vs. Recovery;
... |
| 4 | **Barriers**
Functional safety / fitness for purpose
Delivery of required service | Depth;
Independence;
Common causes/modes, ... |
| 5 | **Controls**
Functional safety / fitness for purpose
Delivery of required service | Reliability and effectiveness;
Availability; Functional / safety integrity;
Resilience; Fail safety; Data integrity;
Verifiability; ... |
Outline

- Motivation
- Assurance Cases
- Example
- Tool support
- Outlook
Factors Affecting UAS Safety

Diverse environment
- Populated / urban / built-up areas
- Uncontrolled / controlled airspace
- Low / high density airspace

Combination of operating modes
- Visual line of sight (VLOS)
- Beyond visual line of sight (BVLOS)
- Beyond radio line of sight (BRLOS)

Varying mission concepts
- Package delivery
- Surveillance
- Aerial inspection
- Mapping, …

Different configurations
- Airborne sensors (Lidar, sonar, FPV camera, Radar)
- Ground sensors (Radar)
- Multiple GCS, Roaming GCS, …

Varying access profiles
- Operating range
- Terminal airspace
- Transit (vertical / lateral)

Increasing complexity in mission and operations

Motivation
- Assurance cases
- EXAMPLE
- Tool Support
- Outlook
UAS Safety Assurance

• Scope of UAS safety
 – Design assurance
 – Prior to deployment
 – Engineering evidence from development of fitness for purpose

• Operational assurance
 – Post-deployment, runtime evidence
 – Corroboration of expected safety performance

• Safety measures should be commensurate with the risk posed by the intended operations
 – Level of risk posed dictates safety measures employed and the extent of assurance provided

• Preferred form of safety justification (FAA Order 8900.1)
 – Safety Case
 – Assessment of Acceptable Level of Safety (ALoS)
UTM / UAS Safety

Notional CONOPS

- Surveillance Requirements
- Avoidance maneuvers, Procedures, etc.
- Justification and Rationale

Airspace / Threat Modeling

Traceability from Hazards to Mitigation Barriers

Identified Hazards

- Primary hazards
 - PH1: NMAC with non-cooperative airborne entities
 - PH2: NMAC between UAs
 - PH3: Collision into ground / structures / people / vehicles
 - PH4: Rapid onset of inclement weather
 - PH5: GPS signal outage
 - PH6: UAs exiting the QR

- Secondary hazards
 - SH1: Lithium fire and/or explosion

Contributory hazards

- CH1: Loss of surveillance
- CH2: Loss of command and control (C2) links
- CH3: Loss of ground control station (GCS)
- CH4: Unrecoverable UA failures/malfunction in flight
- CH5: UA deviation from approved flight path and/or exiting the QR
- CH6: Human factors
- CH7: Loss of voice communication links

Cross References

Mitigation Barriers

Primary and Secondary Hazards

<table>
<thead>
<tr>
<th>Cross References</th>
<th>Mitigation Barriers</th>
<th>PH1</th>
<th>PH2</th>
<th>PH3</th>
<th>PH4</th>
<th>PH5</th>
<th>PH6</th>
<th>SH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.2</td>
<td>M1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Section 3.2</td>
<td>M2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Section 3.1</td>
<td>M3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Section 3.4 and 5.2</td>
<td>M4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>COA Application</td>
<td>M5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Section 6.4</td>
<td>M6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Section 9.3</td>
<td>M7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Section 9.4</td>
<td>M8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Section 6.9</td>
<td>M9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>COA Application</td>
<td>M10</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Hazard Analysis Worksheets Table 9 Table 10 Table 11 Table 12 Table 13 Table 14

Oct. 30 - 31, 2017
Risk Assessment

- Residual risk = Consequence probability x severity
 - Probability of disjunction of all paths leading to consequence
 - Inclusion exclusion principle
 - Path probability = Joint probability of all events on path
 - Barrier *integrity*, threat event probability
 - Assumptions and data
Recall Tiered Assurance

<table>
<thead>
<tr>
<th>Tier</th>
<th>Core Assurance Concerns and Scope</th>
<th>Additional Assurance Qualities</th>
</tr>
</thead>
</table>
| Safety Objectives | **System Safety**
- Safe concept (safety designed-in)
- Safety in design
- Safety in implementation
- Safe transition into service
- **Safety in operations**
 - TLOS / Acceptable level of risk
 - Safe disposal
| **Due diligence**
Reduction of risk
- ALARP
- SFAIRP
- ASARP | **Processes;**
Compliance with Aviation Regulations
- Maturity, ...
- Input data;
- People;
- Competence, ...
- Method and Tools;
- Qualification, ...
- Safety management system;
- Lifecycle |
| 1 | **Overall Assurance**
All hazards / hazard risk statements, i.e., combination of hazardous situation, hazard release.
All relevant consequences across all BTDs. | **Coverage;**
Independence of threats;
Effectiveness;
... |
| 2 | **Profile of Risks**
For each hazard, all risk scenarios (consequences), e.g., midair collision, near midair collision, ground collision, ...
Specific consequence, e.g., midair collision
All causal chains, threats, and dangerous interactions across all hazards. | **Coverage (function, environment, interactions, scenarios, ...);**
Independence;
... |
| 3 | **Individual Risks**
Specific risk scenario, i.e., causal chain of consequence, top event, threats, causes/precursors
Applicable system of barriers / safety measures | **Depth;**
Independence;
Proactiveness: Prevention vs. Recovery;
... |
| 4 | **Barriers**
Functional safety / **fitness for purpose**
Delivery of required service | **Depth;**
Independence;
Common causes/modes, ... |
| 5 | **Controls**
Functional safety / **fitness for purpose**
Delivery of required service | **Reliability and effectiveness;**
Availability;
Functional / safety integrity;
Resilience;
Fail safety; Data integrity; Verifiability;
... |
Argument-based Assurance

<table>
<thead>
<tr>
<th>Tier</th>
<th>Core Assurance Concerns and Scope</th>
<th>Additional Assurance Qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System Safety
 - Safe concept (safety designed-in)
 - Safety in design
 - Safety in implementation
 - Safe transition into service
 - Safety in operations
 - TLOS / Acceptable level of risk
 - Safe disposal</td>
<td>Due diligence
 Reduction of risk
 - ALARP
 - SFAIRP
 - ASARP</td>
</tr>
<tr>
<td>Safety Objectives</td>
<td>Overall Assurance
 All hazards / hazard risk statements, i.e., combination of hazardous situation, hazard release.
 All relevant consequences across all BTDs.</td>
<td>All applicable regulatory requirements</td>
</tr>
<tr>
<td>1</td>
<td>Profile of Risks
 For each hazard, all risk scenarios (consequences), e.g., midair collision, near midair collision, ground collision, ...
 Specific consequence, e.g., midair collision
 All causal chains, threats, and dangerous interactions across all hazards.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Individual Risks
 Specific risk scenario, i.e., causal chain of consequence, top event, threats, causes/precursors
 Applicable system of barriers / safety measures</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Barriers
 Functional safety / fitness for purpose
 Delivery of required service</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Controls
 Functional safety / fitness for purpose
 Delivery of required service</td>
<td></td>
</tr>
</tbody>
</table>
Barrier Fitness for Purpose

- Motivation
- Assurance Cases
- Example
- Tool Support
- Outlook
Ground-based surveillance can adequately detect and track intruders.

Detection and tracking in the radar cone of silence:
- **Detection and tracking in the radar cone of silence**
- **Radar detection and tracking**
- **Range safety display provides adequate situational picture**

Radar detection and tracking
- **C31** Ground-based surveillance system: LSTAR V3, ADS-B ground receiver, integrated range safety display (RSD), visual observers (VOs), and radar operator (RO)
- **C32** Definition of the OR: A prismatic volume of class G airspace, whose base is a quadrilateral and height is 1200 ft AGL

Range safety display functionality
- **E37** RSD displays range of radar in the form of SV including blanked sectors
- **E38** The RSD shows target tracks including position, altitude, and velocity
- **E39** The RSD is calibrated and centered to provide easily comprehensible view of the OR that is consistent with reality
- **E40** Space weather monitoring is undertaken to ensure that GPS position reports are not affected by rare normal error

Pre-flight checks
- **E41** Pre-flight checks for surveillance verify that the RSD display is calibrated, centered, and consistent with reality
- **E42** Display calibration
- **E43** Range safety display provides adequate situational picture

UAV minimum equipment list
- **VFR / VMC**: At > 4500 ft, threat aircraft enter the cone of silence at > 1.2NM from the radar, which are detected by VOs or are otherwise detected earlier by radar
- **E29** Operations occur within Visual Meteorological Conditions (VMC), suitable for VFR flight in

Equipment
- **E20** Ground-based visual observers (VOs) are deployed at the radar location
- **E21** UAS operating BVLOS are equipped with an operating and functional ADS-B Out transponder
- **E22** NASA qualified VOs are part of the crew
- **E23** Definition of radar SV: A 3D hemispheric volume of airspace, of radius 21.5 NM, minus a cone of elevation of aperture 130 degrees immediately above the radar
- **E24** Operations occur within Visual Meteorological Conditions (VMC), suitable for VFR flight in

Data displayed
- **C33** The RSD provides the situational picture of the airspace of operations and its surroundings, consistent with reality

Pre-flight checks
- **E26** RSD is capable of displaying OR, the augmented TV, and SV in a 3D representation
- **E27** RSD does not display the OR, the augmented TV and SV in a 3D representation

Additional topics
- **Motivation**
- **Assurance cases**
- **EXAMPLE**
- **Tool Support**
- **Outlook**

Range safety display
- **C35** RO is trained and qualified under NPR 7900.3, to manage and interpret information from the integrated RSD

Display calibration
- **C36** RSD is capable of displaying the OR, the augmented TV and SV in a 3D representation

Pre-flight checks
- **E41** Pre-flight checks for surveillance verify that the RSD display is calibrated, centered, and consistent with reality

Ground-based surveillance can adequately detect and track intruders
- **C16** Definition of the OR: A prismatic volume of class G airspace, whose base is a quadrilateral and height is 1200 ft AGL
Outline

• Motivation

• Assurance Cases

• Example

• Tool support

• Outlook
AdvoCATE

Developing Structured Arguments

Assurance Case Automation Toolset (AdvoCATE)
AdvoCATE

Automated View Extraction

Bow Tie Modeling
Hazard analysis and safety requirements capture

Structured arguments
- *Pattern* specification and automated pattern *instantiation*
- Integration of formal methods and formal tool-based evidence
- *Hierarchical* and *Modular* refactoring
- Argument *queries* and *views*
- Argument *verification*
- Metrics
- Report generation

Safety architectures
- Bow tie modeling
- Views
- Transformations (event and barrier split / merge)

Evidence management

Safety, Mission Assurance, and Risk management (SMART) Dashboard
Outline

• Motivation
• Assurance Cases
• Example
• Tool support
• Outlook
RISC and OHs

• NASA adoption of safety case paradigm

• Promulgated by Office of Safety and Mission Assurance (OSMA)
 – Objective hierarchies (OHs)
 ▪ Decomposition of assurance objectives
 – Safety, reliability and maintainability, software assurance, range safety, …
 – Risk informed safety case (RISC)
 ▪ System Safety Handbook, vols. 1 & 2
 ▪ Elaborates
 – NASA acquisition process based on safety performance
 – Supplier requirements for justification of safety performance
 – Argumentation for rationale capture
 – Risk assessment and cost-benefit analysis for decision making
• Software assurance research program funding (FY18)
 – Retrospective characterization of assurance afforded by RISC and Software OH against an assurance baseline

 – Assurance baseline from NASA ARC BioSentinel mission
 ▪ CFS/CFE
 ▪ V&V artifacts
 ▪ Current NASA assurance standards and guidelines

 – Mapping to RISC and OH to assurance artifacts
 ▪ Analysis of potential gaps and assurance deficits

 – Tool support via AdvoCATE
Conclusions and Future Work

- Development of end-to-end assurance methodology and tool support
- Foundational research, informed by and corroborated in practical application
- Safety cases created were the first of their kind
 - MIZOPEX: First civil safety case to be approved
 - NASA Honor Award
 - UTM Safety Case: First civil safety case to be approved for using ground-based detect and avoid to conduct BVLOS operations in the NAS
Conclusions and Future Work

- Ongoing focus on design-time assurance
 - Artifacts and rationale from development, prior to release-into-service

- Outlook towards operational assurance through lifecycle
 - In-service safety performance monitoring

- Dashboard for stakeholder-specific assurance

- Current focus on safety
 - Expansion in focus to mission assurance
 - Expansion in application domain to spaceflight
 - Initially robotic
 - Eventually, human spaceflight

Looking for opportunities to infuse our technology into other SGT customer projects
The Assurance Case approach is being adopted in a number of safety-/mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs), as put forth by the Agency’s Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.