Identification of Novel Desiccation-Tolerant
S. cerevisiae Strains for Deep Space BioSensors

Sofia Massaro Tieze¹,²,³, Sergio R. Santa Maria⁴, Lauren Liddell⁵, Sharmila Bhattacharya⁶

¹Blue Marble Space Institute of Science, ²Haverford College, ³Pennsylvania Space Grant Consortium,
⁴University of New Mexico, ⁵Logyx LLC, ⁶NASA Ames Research Center
Primary Objective: Develop a biosensor with autonomous life support technology to study and compare the biological effects of space radiation in different orbital environments.
The BioSentinel Mission

Pre-Launch SLS-Integration at KSC 6-9 mo.
Heliocentric Orbit Insertion 2-4 wk.
Science Operations 6-12 mo.

Mission Risk: Viable cell loss following long term desiccation and acute rehydration stress.
Desiccation-Tolerance Screen Methodology

A.

Methods:

1. *rad51* yeast samples (previously in a desiccated state for three years) rehydrated and grown along with wild type and *rad51* controls and desiccation-tolerant *rad51* clones (A).

2. Largest colonies selected (A), cultured, and desiccated by air drying in 10% trehalose for 7 days.

3. Strains rehydrated at various time points over several months. Viability measured with viable cell counts. Growth, metabolism and radiation sensitivity assessed with an alamarBlue dye reduction assay (B)
Desiccation-Tolerance Screen Results

Results:

- Decrease in % cell survival for all strains following the initial seven-day air-drying process
- DRY1 and DRY2 have similar desiccation-tolerance compared to the previously undesiccated control, YBS29-1 (rad51)
- Following 10 weeks of desiccation, L10 exhibits greater viability than YBS29-1 (rad51), indicating superior desiccation-tolerance
Acknowledgements

This research was funded by the Pennsylvania Space Grant Consortium, the Blue Marble Space Institute of Science, and NASA’s Advanced Exploration Systems (AES) Program. Thank you to Sergio R. Santa Maria, Lauren Liddell, Sharmila Bhattacharya, Sawan Dalal, and the Space Biosciences Division for their support.
References

1. About Space Biosciences - Bringing Life Into Space. NASA. Retrieved 8 June 2017, from https://www.nasa.gov/ames/research/space-biosciences/space-biosciences-overview

8. S. cerevisiae Image - https://www.nasa.gov/images/content/570379main_Petri1XL.jpg