Status and plans for reanalysis at NASA/GMAO

Ron Gelaro
on behalf of the GMAO

5th International Conference on Reanalysis (ICR5), Rome, Italy, 13 – 17 November 2017
Toward an Earth system (re)analysis capability

• GMAO is active in extending its GEOS system to encompass many aspects of the Earth system

• Progress incrementally through a combination of systems with increased levels of coupling, plus offline component reanalyses

• GMAO’s work links strongly to NASA’s Earth observations
 ‣ Use of GEOS products by instrument teams
 ‣ Ingest of NASA data to demonstrate their value in Earth system analyses
 ‣ Planning for new NASA missions

This talk focuses on a few examples that illustrate current capabilities and are steps on the pathway to future growth
GMAO reanalyses and derivative products

Atmosphere
- MERRA 1979-2016
- MERRA-2 1980-Present
 - includes aerosol analysis
- MERRA2-Ocean 1980-Present
 - ...plus Ocean including sea ice

Ocean
- MERRA-Ocean 1993-Present
- MERRA2-Ocean 1980-Present

Composition
- MERRA-Aero 2002-2015
- MERRA2-Chem 2004-Present

Enhancements
- MERRA-Land 1979-2016
- MERRA2-R12K 2002-2015
 - downscale to 12-km

Biogeochemical
 - ocean state, biology, carbon fluxes

Planned
Some aspects of MERRA-2

- GMAO’s most recent atmospheric reanalysis of the modern satellite era
- Advances over its predecessor, MERRA (terminated 29 Feb 2016)
 - Many more observations
 - Model and analysis updates
- **Focus on non-meteorological aspects as a pathway to a more complete Earth system reanalysis**
 - Aerosol data assimilation
 - Representation of cryospheric processes
 - Use of NASA observations in the stratosphere, especially ozone
- Well documented, including a special collection in *J. Climate*

Several oral and poster presentations at this conference
MERRA-2 aerosol analysis

Time series of AOD in MERRA-2 averaged over major aerosol source regions (1980 – 2014)

Seasonal cycles of dust and biomass burning apparent in all regions, as are large increases in sulfate after El Chichón and Mt. Pinatubo eruptions

Dominant aerosol types generally differ by region, e.g. dust over Africa, carbon from biomass burning over Amazon
GMAO coupled atmosphere-ocean assimilation development

Atmospheric DA

Jan 2017
GEOS ADAS
4D-EnVar
12-km L72
Aerosols
AO Skin SST

May 2018
GEOS ADAS
LSM Update
L132

May 2019
GEOS ADAS
New Physics
9-km

Atmosphere-Ocean Coupled DA

Oct 2017
S2S v2
MOM5 0.5° L40
CICE
UMD LETKF

Jan 2019
S2S v3
MOM5 0.25° L50
Catchment-CN
Salinity
Sea Ice Thickness

Jan 2021
GEOS AODAS
MOM6
New CICE
GSI O-LETKF

Next Reanalysis S2S Prediction NWP

Seasonal Prediction

Jan 2017
S2S v2
MOM5 0.5° L40
CICE
UMD LETKF

May 2018
GEOS ADAS
LSM Update
L132

May 2019
GEOS ADAS
New Physics
9-km

Jan 2021
GEOS AODAS
MOM6
New CICE
GSI O-LETKF

Next Reanalysis S2S Prediction NWP
GEOS coupled atmosphere-ocean assimilation system

Background fields from the coupled GEOS AOGCM

Separate analyses for the ocean and atmosphere (and aerosols)

Information exchange between components occurs through IAU model integration
GEOS semi-coupled skin SST analysis (AO interface)

- Model diurnal cycle, with cool skin plus diurnal warming in 2-meter mixed layer
- Assimilates SST-sensitive IR radiances plus all other data in the atmospheric analysis
- Eventually, T_{bulk} from coupled ocean model

Temperature vs. Depth

- T_{skin} (cool skin layer)
- T_{bulk} (bulk temperature)
- O (mm)
Ocean biogeochemical assimilation

MERRA meteorology, SST, sea-ice

OASIM
Spectral Irradiance Model

Layer depths

Spectral irradiance

SW radiation

Inherent optical properties

NASA Ocean Biogeochemical Model (NOBM)

Assimilates chlorophyll, absorption of colored dissolved organic matter (CDOM), and particulate inorganic carbon (PIC)

Outputs chlorophyll, nutrients, phytoplankton groups, primary production, nutrients, carbon components and fluxes, spectral irradiance/radiance
MERRA-NOBM global decadal trends in ocean phytoplankton

- Now two decades of continuous, high-quality ocean color observations, e.g., SeaWiFS, MODIS, VIIRS (total chlorophyll)
- Biogeochemical reanalysis shows that trends (1998-2012) in total chlorophyll are the net effect of distinct changes in different species

Long-standing collaboration with Harvard to develop **GEOS-Chem** for use in GEOS

As a research project, recently began daily full chemical forecasts at 25-km resolution, forced by GEOS real-time meteorology

Currently, no assimilation of chemical species, but this will be worked in slowly as a separate optimization from the met state (**OMI, MOPITT, ...TEMPO, Sentinel, GEMS**)
HAQI shown here combines O_3, NO_2 and $PM_{2.5}$.
Summary

- GMAO is working toward an integrated Earth system analysis capability to advance its activities in S2S, reanalysis and NWP
- A reanalysis with coupled physical components of the atmosphere, ocean, land and cryosphere is planned for 2021 (duration/period and exact system configuration TBD)
- Given GMAO’s focus on the use of NASA observations, ongoing research is aimed at the representation of aerosols, chemical, and biogeochemical processes
- Continue production of MERRA-2, and MERRA-2-driven component reanalyses that serve as test environments for emerging capabilities