Mission Status for Earth Science Constellation MOWG Meeting @ KSC

December 6, 2017

DOMINIC FISHER
Aura Mission Director - Code 584
phone 301-286-3171
dominic.m.fisher@nasa.gov
Topics

- Mission Summary
- Spacecraft Subsystems Summary
- Recent Activities
- Planned Activities
- Propellant Usage & Lifetime Estimates
- Overall Summary

- Additional Slides:
 - Spacecraft Maneuvers & Ground Track History
 - Conjunction Assessment
 - Data Capture & Ops Error Statistics
 - Extended Mission Plans
EOS Aura Mission Summary
(Updates since June 2017 MOWG @ GSFC)

• 07/15/04: Launch
 – 6-Year Design Life
• 09/30/10: End of Prime Mission Review
• 01/25/2017: ESMO Annual Review #10
• 03/03/2017: Senior Review Proposal #5
 – Reliability Estimates thru 2022
 – Consumables through 2022
• 06/22/17: NASA Earth Science Senior Review Subcommittee Report
 – High Utility, Excellent science merit
 – Recommendation to continue with reduction (extend Aura with MLS and OMI, but cease TES operations)
• 07/15/17: Aura 13-Year Anniversary
Aura Spacecraft Subsystems
(Updates since June 2017 MOWG @ GSFC)

• Command & Data Handling (CDH) – Nominal
 – Formatter Multiplexer Unit (FMU) / Solid State Recorder (SSR) Anomaly
 » Initial symptoms occurred December 4-18, 2007
 » Newest symptoms started in January 2017 and remain active (impacting S-Band HK data capture)

• Communications (COMM) – Nominal
 – Transmitter-B Reflected Power Anomaly – October 17-21, 2017 - Yellow limit violations

• Electrical Power System (EPS) – Nominal
 – Array Regulator Electronics (ARE) Anomalies:
 » Solar Panel Connector Anomaly – ARE-3C (January 12, 2005) – loss of ~11 strings
 » MMOD Strike – ARE-5A (March 12, 2010 & April 25, 2013) – loss of ~6 strings
 – ARE Degradation due to aging – each occurrence is a loss of ~ 1 string: ARE-5C (9/27/12, 2/4/13), ARE-1A (3/12/10, 11/5/11), ARE-6A (9/14/13), ARE-4A (12/8/14), ARE-1C (7/14/17), ARE-2C (8/28/17)
 » Estimated that Aura has lost 26 strings of solar cells out of a total of 132 strings (~19.7%)
 » Aura continues to have significant power margin where the life limiting item is fuel

• Flight Software (FSW) – Nominal
• Guidance, Navigation & Control (GN&C) – Nominal
 – Reaction Wheel Assembly (RWA) #3 Anomaly (12/03/2016) – Recovered on 12/13/16

• Propulsion (PROP) – Nominal
• Thermal Control System (TCS) – Nominal

All subsystems configured to primary hardware
Recent Activities
(June 2017 – November 2017)

- 6 CARA High Interest Orbital Debris Events (Tiers 1-4) (As of 10/30/17)
 - 1 required significant action (T3 / T4)
 - 07/21/2017: DMU replanned to reduce risk of post-manuever conjunction (T4)
- 1 Spacecraft Bus Anomalies
 - COMM: Transmitter-B Reflected Power Anomaly (10/17/17 – 10/21/17) – Not active
- 1 Instrument Anomalies
 - TES: 1 ICS Stall (07/29/17) – resumed science collection on 09/17/17
- 5 Spacecraft Maneuvers
 - 5 Drag Make-up Maneuvers (DMUMs # 103 – 107)
 » (4) Routine: 06/21/17, 08/16/17, 09/13/17, 10/25/17
 » (1) Affected by CA: 07/21/17 (replanned due to post-manuever CA concern)
- July 2017: Draft ‘EOS FDS Updated Analysis for Aura Decommissioning’ delivered
- August 2017: EOS Automation (EA) Phase II (Monitoring & Alerting) ORR
- September 2017: OMI Science Team Meeting
- October 2017: EA Phase III CDR
 Final ‘EOS FDS Updated Analysis for Aura Decommissioning’ delivered
 TES Decommissioning Planning – End of Life Test / Global Survey
Planned Activities

- **December 2017:** Aura Reaction Wheel (RW) Slew Maneuver Test (#1)
- **January 2018:** Aura RW Slew Maneuver Test (#2); ESMO Annual Review #11
- **February 2018:** TES Decommissioning (Date TBD)
- **Spring 2018:** Annual Inclination Adjust Maneuvers
 - * Targeting Aura IAM #56 to be performed using RW to slew out and slew back
- **Spring 2018:** Aura Decommissioning Review (DRAFT)
 - Document Phase F spacecraft activities, any new products to be developed for spacecraft / instrument calibration, proposed Engineering Tests, and Passivation Sequence
- **June 2018:** Earth Science Constellation (ESC) MOWG (06/05/17 @ Sioux Falls, SD)
 - Update propellant budget, decommissioning analysis, reliability predictions, etc.
- **Mid-to-Long-Term Plans**
 - **Aqua/Aura Maneuver Working Group**
 - Perform Aura RW Slew Maneuver Test (#3) after Spring 2018 IAM Series
 - Use Slew Maneuver Test data to validate a retrograde maneuver capability (Summer 2018)
 - **EOS Automation (EA) – automation of routine operations**
 - EA Phase III – ORR Summer 2018
 - **Continue to improve RMM / DAM execution**
 - CA automation (CRMS) in the following slide
Planned Activities
(TES Decommissioning)

• As the result of predicted budget constraints and initial 2017 Senior Review evaluations, the Aura FOT and TES IOT have been preparing for instrument decommissioning since August 2017
• FOT / IOT have held regular bi-weekly meetings to define the final instrument, spacecraft, and ground system configurations
 – Instrument will be transitioned to a modified safe state (IEM & Op Heaters ON)
 – Spacecraft will have unnecessary telemetry monitors (TMONs) disabled and fault management will be updated to match the final instrument safe state
 – Ground System will have various proc and database updates
• No power or thermal concerns with the instrument in modified safe state
• During end of life testing TES resumed Global Survey (GS) observations on 10/23/17
• Open Items:
 – Fault Management update (FOT working with AFM to deliver SCS)
 – CDH proc updates (current procs still able to function in the interim)
 – Alarm setup updates; Database updates
 – Auto Ops (SCS) update (able to utilize Auto Log mode in the interim)
• Timeline:
 – TES Decommissioning Review @ JPL – Tentatively two weeks prior to decommissioning date
 – TES Decommissioning Date – 90-days from when guidance is given by NASA HQ (SMD/ESD)
Planned Activities
(Aqua/Aura Maneuver Development)

• Initial focus was to develop a retrograde maneuver capability that could be utilized to exit the constellation, lower the orbit at the end of mission, and/or for control box excursion recovery

• Development evolved to investigate the potential of performing Inclination Adjust Maneuvers (IAMs) using reaction wheels instead of thrusters to slew (yaw)

• IAMs using Reaction Wheels
 – Goal is to save fuel and mission life
 » Typical thruster only IAMs use ~10kg of fuel per series; Currently have ~75 kg
 – Plan to demonstrate slews on wheels during a series of tests (no-burn)
 » 3 test maneuvers of increasing complexity have been devised
 – Test Maneuver #1 – slew angle = -25°
 – Test Maneuver #2 – slew angle = -76.5°
 – Test Maneuver #3 – slew angle = -88°
 » Allow the FOT and FDS team use products and procedures that would be used for the RWA IAM
 » Use the same abort scenarios and fault management (FM) that would also be developed for the RWA IAM
 – Goal is to perform 1 IAM with RWs in March 2018
 » Targeting Aura IAM #56 (03/28/18) (4th IAM of the series, week break before and after for assessment)
 – Serves as an incremental step towards retrograde maneuver capability
 » Test Maneuver #3 – will verify RWA max slew rate (0.179 °/s)
 » Retrograde Maneuver would slew to 180° orientation
Planned Activities
(Aqua/Aura Maneuver Development)

• Retrograde Maneuvers
 – Will be used to lower orbit during constellation exit and decommissioning
 » Aqua currently planned for early 2022
 » Aura currently planned for early 2023
 – Potential to correct orbit after large Debris Avoidance Maneuvers (DAM) (i.e., large excursions from control box)
 » Potential challenge to maintain orbit with larger debris catalogue when Space Fence comes online (~2019)
 – Plan to show retrograde maneuver capability by similarity / simulation
 » ESMO Management goal is to show this capability by Summer 2018
 » No intention to perform on orbit retrograde maneuver test
 » Data from the slew on wheel test maneuvers will be used to correlate the simulations

• Open Items:
 – Test AFM FM patch and finalize FM management procedures
 – Complete EOSSIM and ETSF simulations to aid in analysis work
 – Follow-up with IOTs on Test Maneuver details and any concerns

• Timeline:
 – 12/12/17: Test Maneuver #1
 – January 2018: Test Maneuver #2
 – 03/28/18: Aura IAM #56 (using RWs)
 – May 2018: Test Maneuver #3
Collision Risk Management System (CRMS) Process Improvements

- ESMO has developed ground system capabilities to autonomously identify and develop maneuver options to assist in Risk Mitigation Maneuver (RMM) / Debris Avoidance Maneuver (DAM) planning

- Developed in response to an increased number of predicted close approaches with orbital debris and operational satellites
 - More High Interest Events (HIEs) had led to more effort to plan mitigation maneuvers
 - Concern is that updates to the US Air Force Space Fence will significantly increase the size of the Space Catalog

- Key CRMS capabilities include:
 - User defined collision risk thresholds
 - Maneuver optimization to address multiple conjunctions with secondary object conjunctions

- EOC is currently operating with CRMS Release 5.2 (ORR 06/22/17)
 - Patch allows for data retrieval of JSpOC and/or CARA generated CDMs
Spring 2018
Inclination Adjust Plan

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Feb</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28 Aura IAM #53</td>
<td>1March Aqua IAM #56</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7 Aura IAM #54</td>
<td>8 Aqua IAM #57</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14 Aura IAM #55</td>
<td>15 Aqua IAM #58</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20 Equinox</td>
<td>21 Spring Break</td>
<td>22 Spring Break</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27 Aura ID</td>
<td>28 Aura IAM #56 Goal is to use RWAs</td>
<td>29 Aqua IAM #59</td>
<td>30</td>
<td>31 Aqua ID</td>
</tr>
<tr>
<td>1 April Easter</td>
<td>2</td>
<td>3</td>
<td>4 Easter Break</td>
<td>5 Easter Break</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11 Aura IAM #57</td>
<td>12 Aqua IAM #60</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18 Aura Back-up</td>
<td>19 Aqua Back-up</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>

- **Golden Week in Japan**

12/6/2017

ESC MOWG - December 2017
Aura Propellant Usage (Analysis Updated October 2017)

- **2006**: Initial Aura lifetime fuel analysis
- **2008**: Detailed Aqua & Aura lifetime analysis
 - Presented to MOWG and at Aura End of Prime Mission Review in September 2010
- **2012 (September)**: Initial Aura Decommissioning Plan
 - Updated Lifetime Estimates
- **2013 (August)**: Updated Decommissioning Plan
 - Updated propellant trends for IAMs & DMUMs
 - Updated definitive fuel usage and predicted solar flux levels
 - Updated Constellation Exit Plan
- **2014 (September)**: Updated Decommissioning Plan
 - Updated propellant trends for IAMs & DMUMs
 - Updated definitive fuel usage and predicted solar flux levels
- **2015 (September)**: Decommission Plan Update Postponed
 - Postponed to evaluate long-term plan and decommissioning maneuvers
- **2016 (January)**: Updated Decommission Plan (v1.2)
 - Updated definitive fuel usage & predicted solar flux levels
 - Updated propellant estimates for IAMs & DMUs
 - Included hypothetical MLT drift analysis with LS-8
- **2017 (October)**: Updated Decommission Plan (v1.0)
 - Updated definitive fuel usage & predicted solar flux levels
 - Updated propellant estimates for IAMs & DMUs

- **Annual updates will be provided each July (starting in 2017)**
 - Final will be produced 60 days before start of decommissioning
Remaining Fuel Estimate
(Analysis Updated October 2017)

• Long-term orbit simulations were run for Aura through Feb 2023
 – Used mean nominal Schatten solar flux predictions (March 2017)
 – Estimated the frequency of drag make-up maneuvers to maintain Aura’s WRS-2 ground track requirements
 – Estimated the required number of annual inclination maneuvers for Aura to maintain it’s mean local time (MLT) requirement (25 IAMs through 2023)
 – Did not include potential debris avoidance maneuvers
 – Utilized FreeFlyer 6.7.2 which incorporated the solid earth tide model allowing greater accuracy for long term predictions of inclination, beta angle, and mean local time

• Lifetime predictions for Aura shows that the spacecraft will have sufficient fuel to maintain its current orbit within the Afternoon Constellation through 2022 (before 2023 IAM series).

• Aura will hold sufficient fuel in reserve after exiting the constellation to lower perigee such that reentry will meet the NASA 25-year reentry requirement.

• Analyses are updated annually by ESMO Flight Dynamics Team
 – Currently developing a retrograde maneuver capability and a more efficient inclination/mean local time option to extend the potential lifetime
Fuel reserved to safely exit constellation, lower perigee and meet Agency 25-year reentry requirement is approximately 15.1 kg (including a 6-kg buffer) to exit 4.4 km outside the constellation while executing an “active yaw” retrograde maneuver.
Debris Assessment Software
(Analysis Updated October 2017)

• The Debris Assessment Software (DAS) was created by the Orbital Debris Office at Johnson Space Center and is the Agency standard for end of mission life analyses and lifetime estimations (Version 2.1.1)

• DAS requires several inputs describing the spacecraft’s mission:
 – Start apogee = Average Height = ~696 km (at constellation exit)
 – Spacecraft Dry Mass = 2791.746 kg (includes 1.2 kg of unusable fuel and 4.8 kg of uncertainty)
 – Tumbling Area = 46.1 m² (FDSS-II-07-0085_Aura Average Area _V1.0 (3/1/17))
 – Area-to-Mass Ratio = Tumbling Area / Dry mass = 0.016485 m²/kg
 – Start inclination = 98.2°
 – Launch date = 07/15/2004

• In turn, DAS outputs:
 – If the mission is compliant with NASA requirements for limiting orbital debris
 – A recommended apogee and perigee that will allow the spacecraft to reenter within a specific period and satisfy the NASA requirements

• Aura has a waiver to the 30-years from launch requirement
• Aura will hold sufficient fuel in reserve to meet the 25-year requirement
Aura DAS End of Life Predictions
(Same Baseline Plan – Analysis Updated October 2017)

Aura Required Fuel
Nominal Solar Flux Predictions and Tumbling Reentry Area
4.4 km Exit and Active Yaw Deorbit Maneuvers

- Predicted Fuel Usage
- 25yr Requirement
- Fuel Limit (with 6 kg buffer)

Fuel Remaining (kg)
Date

2018
2019
2020
2021
2022
2023

2018 IAM Series
2019 IAM Series
2020 IAM Series
2021 IAM Series
2022 IAM Series
Constellation Exit and Decommissioning Burns (~ Feb 2023)

Fuel Needed to meet 25 Year Re-entry Requirement

Fuel required to perform 4-km circular constellation exit ~ 9 kg (2 burn pairs)

Predicted EOL fuel buffer = 6 kg (4.8 kg uncertainty + 1.2 kg ullage)
Aura Predicted Mean Local Time
(Same Baseline Plan – Analysis Updated October 2017)

Mean Local Time of the Ascending Node (MLTAN)

Extended Mission
Continue Operations below A-Train orbit

Constellation Exit & Decommissioning Burns (February 2023)

MLTAN (HH:MM)

Date

12/6/2017
ESC MOWG - December 2017
17
Aura Predicted Re-entry
(Same Baseline Plan – Analysis Updated October 2017)

Constellation Exit & Decommissioning Burns (February 2023)

25 year re-entry based on DAS 2.1.1

Predicted Re-entry February 2048
Aura End of Mission Plan (EOMP)
(Plan Updated Spring 2017)

- Initial draft February 2009
- Produced the first “Interim” End of Mission Plan (EoMP) in May 2011
 - Approved by NASA HQ July 2011
- Produced EoMP Rev A: February 2013
 - Updated Lifetime Estimates (09/2012)
 - Added Small Object Collision Assessment
- Produced EoMP Rev B: February 2015
 - Updated Lifetime Estimate (09/2014)
- Produced EoMP Rev C: June 2017 (in signature cycle)
 - Updated Lifetime (12/2016) & Reliability estimates
- Final will be produced 60 days before End of Mission
- Synopsis:
 - Safely exit the A-Train Constellation
 - Passivate Aura to the extent possible for uncontrolled reentry
 - Aura has five (5) approved waivers for passivation
 » Pressurant Passivation
 » Large Object Collision Probability
 » Small Object Collision Probability
 » Orbital Lifetime (30-Year)
 » Re-entry Risk (Un-controlled)
 - Waivers were approved in May 2013

12/6/2017
ESC MOWG - December 2017
Summary

- **Spacecraft Status – GREEN**
 - COMM: Transmitter-B Reflected Power Anomaly (10/17/17 – 10/21/17)

- **Instrument Status - GREEN**
 - HIRDLS: Chopper Stalled 03/17/08 – Not collecting science data
 - MLS: Operating Normally – Only periodic Band 13 measurements
 » 08/06/13: Band 12 Shut down (reached end of useful life – 2-year design)
 » 02/25/17: R2 Lock Status Yellow Alarms (due to aging, voltage fine-tuned 03/08/17)
 » THz module in Standby Mode – Potential for one final measurement – Date TBD
 - OMI: Operating Normally
 » Field-of-View Anomaly started in September 2007 – currently stable
 » 03/12/17: OMI Survival Mode Transition (Recovered 03/16/17)
 - TES: Operating Normally (Planning for Decommissioning in early 2018)
 » 07/29/17: TES ICS Stall #16 – resumed science observations on 09/17/17
 » 10/23/17: Resumed Global Survey observations during End of Life test (first since 2012)

- **Data Capture/L0 Processing Status – GREEN**
 - SSR Data Capture to 10/31/17: 99.99586202%

- **Ground Systems – GREEN**
 - 08/03/17: EOS Automation (EA) Phase II ORR
 - 04/11/2017: MMS Build 24.2.0 (RHEL7) Transition for Aura
Questions
Additional Charts

Maneuvers & Ground Track History
Orbital Trends

Aura Conjunction Assessment
High Interest Events (HIEs)

Data Capture & Operations Errors

Extended Mission Plans
(Analysis Updates)
Orbit Maintenance

- **Mission Requirements**: Perform Drag Make-Up Maneuvers (DMUMs) to maintain Aura’s Ground Track Error (GTE) with respect to the World Reference System (WRS-2)
 - Requirement: +/-20 Km as measured at the Descending Node
- To meet coincident viewing requirements, Aura’s initial ground track was offset from Aqua’s by one WRS path plus 25.4 Km
 - Aura was maintained -5.4 to -45.4 Km west of Aqua until late 2007
 - Since May 8, 2008, a new control box, +/- 10 Km from a +18 Km (east) offset of the Aqua WRS-2 path is used to maintain MLS-CALIPSO viewing request
- To date a total of **107** routine DMUMs have been performed
 - 07/19/2012: DMUM # 43 No Yaw Slew Maneuver (NYS) #1 – NYS Maneuvers (37)
 - Last maneuver 10/25/2017 (#107) – Next planned maneuver 12/06/2017 (#108)
 - Variation in performance from -3.5% (cold) to +3.3% (hot)
- Conducted 12 series of inclination adjustment maneuvers
 - Fall ‘04 (4), Fall ‘06 (4 of 6), Spring ‘07 (4), Spring ‘09 (9), Spring ‘10 (3), Spring ‘11 (3), Spring ‘12 (4), Spring ‘13 (4), Spring ‘14 (4), Spring ‘15 (5), Spring ‘16 (4), & Spring ‘17 (4)
 - Variation in performance from -4.5% (cold) to +1.9% (hot)
Aura WRS Groundtrack Error at the Descending Node
(Maneuver planning targets included)

May 8, 2008
Re-Phase Maneuver

Updated Biannually for ESC MOWG Meetings
Aura WRS Groundtrack Error at the Descending Node
(Maneuver planning targets included)
Aura Averaged MLT @ Ascending Node
(As of October 29, 2017)

Aura Averaged Mean Local Time at the Ascending Node

MLT at the Ascending Node (HH:mm)

MLT at the Ascending Node (hh:mm)

Fall 2004 IAMs
Spring 2007 IAMs
Spring 2010 IAMs
Spring 2012 IAMs
Spring 2014 IAMs
Spring 2016 IAMs

Fall 2006 IAMs
Spring 2009 IAMs
Spring 2011 IAMs
Spring 2013 IAMs
Spring 2015 IAMs
Spring 2017 IAMs

Date

12/6/2017
ESC MOWG - December 2017
Aqua/Aura Mean Local Time (MLT) @ Ascending Node (As of October 29, 2017)

Aqua and Aura MLT Separation

Updated Annually after Inclination Adjust Maneuvers
Aura Predicted Beta Angle
(With Yearly Inclination Maneuvers) (No Change)

12/6/2017
ESC MOWG - December 2017
Aura and Landsat-8 (LS-8) Orbit Phasing

With Aura in the intersection point LS-8 will be ~ 77 seconds away from the intersection Point worse case

By Design – LS-8 and LS-7 are ½ orbit apart

Over the past 8 months (Mar-Nov) there has been 260-340 seconds between Aura and LS-8

Terra ~ 30 min behind LS-7

1 Orbit = ~ 100 minutes
2013: 29 CARA HIEs – 14 required significant action (T2-T4)
2014: 33 CARA HIEs – 18 required significant action (T2-T4)
2015: 32 CARA HIEs – 18 required significant action (T2-T4)
2016: 24 CARA HIEs – 16 required significant action (T2-T4)

2017: 15 CARA HIEs (thru 10/30/2017) – 12 required significant monitoring and/or actions (T2-T4)

1. 02/01/2017: CA vs. 13482 on 02/03 at 04:53:36 GMT – HIE briefing but Pc dropped off, continued to monitor (T2)
2. 02/13/2017: CA vs. 35863 on 02/15 at 21:34:48 GMT – DAM planned but conjunction Pc rolled off (T3)
3. 03/08/2017: CA vs. 23547 on 03/12 at 01:36:07 GMT – Post-IAM HIE, screened hot and cold burn cases (T3)
4. 03/11/2017: CA vs. 34363 on 03/13 at 03:24:52 GMT – MTS plots generated but Pc dropped off (T2)
5. 03/26/2017: CA vs. 25759 on 03/26 at 13:39:58 GMT – Executed DAM for HIE with very small miss distance (T4)
6. 04/26/2017: CA vs. 18908 on 04/28 at 17:27:28 GMT – Rescheduled planned DMU due to post-maneuver conjunction (T4)
7. 05/25/2017: CA vs. 28366 on 05/25 at 19:01:09 GMT – Planned DAM for HIE with small miss distance (T3)
8. 06/05/2017: CA vs. 38728 on 06/06 at 21:52:04 GMT – MTS plots generated but Pc dropped off (T2)
9. 07/12/2017: CA vs. 36706 on 07/15 at 13:00:10 GMT – Monitored but no action required (T2)
10. 07/21/2017: CA vs. 26093 on 07/22 at 08:36:57 GMT – DMU replanned to reduce risk of post-maneuver conjunction (T4)
11. 08/13/2017: CA vs. 36712 on 08/17 at 15:20:54 GMT – Monitored planned DMU but no replanning required (T2)
12. 09/16/2017: CA vs. 40993 on 09/19 at 20:15:25 GMT – Monitored but no action required (T2)
Aura Conjunction Assessment
(September 2005 thru June 2017)

Number of Unique Events

Credit: NASA CARA Team
Aura Monthly Data Capture
SSR Data Capture to 10/31/2017: 99.99586202%

Mission Capture Req. = 95%

- 37 months with no data losses
- 79 months with no data losses

- EDOS Ops Error (2005)
- SSR Anomaly (2007)
- FOT Ops Error (2011)
- Norway Communication Outages (2006)
Operational Errors
(18-Months: May 2016 – October 2017)

Aura: 79 Months since last operational error (April 2011)
+6 years of Aura FOT Error Free Operations
 Aura Baseline Decommissioning Plan
(Same Baseline Plan – No Change)

• Baseline Decommissioning Plan Assumptions:
 – Maintain MLT and WRS-2 Ground Track requirements until the DAS 25-year re-entry fuel limit is reached (Spring 2023)
 ➢ Perform nominal annual IAMs to maintain MLT
 ➢ Perform periodic DMUs to maintain WRS-2 Ground Track Error

Documented in final ‘EOS FDS Updated Analysis for Aura Decommissioning’ (v1.0, 10/31/17)
Aura Predicted Beta Angle
(Same Baseline Plan – Analysis Updated October 2017)
Aura Predicted Semi-Major Axis
(Same Baseline Plan – Analysis Updated October 2017)

Semi-Major Axis (SMA)

Constellation Exit & Decommissioning Burns (February 2023)

Extended Mission

Date
01/01/2018 01/01/2019 01/01/2020 01/01/2021 01/01/2022 01/01/2023 01/01/2024

SMA (km)
7030.0 7035.0 7040.0 7045.0 7050.0 7055.0 7060.0 7065.0 7070.0 7075.0 7080.0
Aura Predicted Semi-Major Axis
(Same Baseline Plan – Analysis Updated October 2017)

Semi-Major Axis (SMA)

Constellation Exit

Perigee Lowering (Decommissioning)

Extended Mission

Date

01/01/2023
01/01/2024

SMA (km)

7080.0
7075.0
7070.0
7065.0
7060.0
7055.0
7050.0
7045.0
Aura Alternate Decommissioning Plan
(Same Alternate Plan – Analysis Updated October 2017)

• **Alternate Decommissioning Plan Rationale:**
 – After the OMI / TROPOMI 2-year overlap period ends, currently late 2019, fuel saving orbital maintenance schemes may be a consideration
 (Successful Sentinel-5P launch on 10/13/17, TROPOMI undergoing check out)

• **Alternate Decommissioning Plan Assumptions:**
 - Full IAM Series through 2019
 - Exit A-Train in February 2020 (4.4 km lower in SMA)
 - Stop performing annual IAMs after the 2019 series
 - Allow MLT and Solar Beta Angle to drift until 2025 (or beyond)
 - Perform periodic DMUs until 2025 (or beyond)
 - Maintain WRS-2 ground track and frozen orbit

Documented in final ‘EOS FDS Updated Analysis for Aura Decommissioning’
(v1.0, 10/31/17, Appendix B)
Aura Fuel Usage: Actual & Predicted
(Same Alternate Plan – Analysis Updated October 2017)

Definitive Fuel Use
Predictive Fuel Use
Fuel Limit (Constellation Exit + Residual)

2009 IAM Series

2017 IAM Series
MLT Drift Start

2019 IAM Series

Assumed Decommissioning Date (~ Feb 2025)
Constellation Exit (~ Feb 2020)

Fuel Remaining (kg)

Date

Fuel Limit

12/6/2017
ESC MOWG - December 2017
Aura Predicted Fuel Usage
(Same Alternate Plan – Analysis Updated October 2017)

- Assumed Decommissioning Date (~ Feb 2025)
- Potential to extend fuel life out to 2036

Graph showing fuel remaining (kg) over time, with timelines for 2017 IAM Series, 2018 IAM Series, 2019 IAM Series, MLT Drift Start, Constellation Exit (~ Feb 2020), and 25 Year Requirement.
Aura Predicted Beta Angle
(Same Alternate Plan – Analysis Updated October 2017)
Aura Predicted Semi-Major Axis
(Same Alternate Plan – Analysis Updated October 2017)

Extended Mission

Constellation Exit (~ Feb 2020)

Assumed Decommissioning Date (~ Feb 2025)
Aura Predicted Re-entry
(Same Alternate Plan – Analysis Updated October 2017)

Apogee/Perigee Altitude History for a Given Orbit

Assumed Decommissioning Date
(~ February 2025)

Re-entry date based on DAS 2.1.1

Predicted Re-entry
~ May 2044
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Aqua/Aura FSW Maintenance</td>
</tr>
<tr>
<td>AN</td>
<td>Ascending Node</td>
</tr>
<tr>
<td>ARE</td>
<td>Array Regulator Electronics</td>
</tr>
<tr>
<td>ASAT</td>
<td>Anti-satellite Weapon</td>
</tr>
<tr>
<td>CA</td>
<td>Conjunction Assessment</td>
</tr>
<tr>
<td>CALIPSO</td>
<td>Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations</td>
</tr>
<tr>
<td>CARA</td>
<td>Conjunction Assessment Risk Analysis</td>
</tr>
<tr>
<td>CDH</td>
<td>Command & Data Handling</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>CDM</td>
<td>Conjunction Data Message</td>
</tr>
<tr>
<td>COMM</td>
<td>Communications</td>
</tr>
<tr>
<td>CRMS</td>
<td>Collision Risk Management System</td>
</tr>
<tr>
<td>DAM</td>
<td>Debris Avoidance Maneuver</td>
</tr>
<tr>
<td>DAS</td>
<td>Debris Assessment Software</td>
</tr>
<tr>
<td>DMSP</td>
<td>Defense Meteorological Satellite Program</td>
</tr>
<tr>
<td>DN</td>
<td>Descending Node</td>
</tr>
<tr>
<td>DMUM</td>
<td>Drag Make-up Maneuver</td>
</tr>
<tr>
<td>EA</td>
<td>EOS Automation</td>
</tr>
<tr>
<td>EDOS</td>
<td>EOS Data Operations System</td>
</tr>
<tr>
<td>EOC</td>
<td>EOS Operations Center</td>
</tr>
<tr>
<td>EOL</td>
<td>End of Life</td>
</tr>
<tr>
<td>EOMP</td>
<td>End of Mission Plan</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Observing System</td>
</tr>
<tr>
<td>EOSSIM</td>
<td>EOS Simulator</td>
</tr>
<tr>
<td>EPS</td>
<td>Electrical Power System</td>
</tr>
<tr>
<td>ESC</td>
<td>Earth Science Constellation</td>
</tr>
<tr>
<td>ESD</td>
<td>Earth Science Division</td>
</tr>
<tr>
<td>ESMO</td>
<td>Earth Science Mission Operations</td>
</tr>
<tr>
<td>ETSF</td>
<td>EOC Training Simulator Facility</td>
</tr>
<tr>
<td>FDS</td>
<td>Flight Dynamics System</td>
</tr>
<tr>
<td>FM</td>
<td>Fault Management</td>
</tr>
<tr>
<td>FMU</td>
<td>Formatter Multiplexer Unit</td>
</tr>
<tr>
<td>FOT</td>
<td>Flight Operations Team</td>
</tr>
<tr>
<td>FSW</td>
<td>Flight Software</td>
</tr>
<tr>
<td>GCOM-W</td>
<td>Global Change Observation Mission Water</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>GNC</td>
<td>Guidance Navigation & Control</td>
</tr>
<tr>
<td>GS</td>
<td>Global Survey</td>
</tr>
<tr>
<td>GSC</td>
<td>Goddess Space Flight Center</td>
</tr>
<tr>
<td>GTE</td>
<td>Ground Track Error</td>
</tr>
<tr>
<td>HIE</td>
<td>High Interest Event</td>
</tr>
<tr>
<td>HIRDLIS</td>
<td>High Resolution Dynamics Limb Sounder</td>
</tr>
<tr>
<td>HK</td>
<td>Housekeeping</td>
</tr>
<tr>
<td>HQ</td>
<td>Headquarters</td>
</tr>
<tr>
<td>IAM</td>
<td>Inclination Adjustment Maneuver</td>
</tr>
<tr>
<td>ICS</td>
<td>Interferometer Control System</td>
</tr>
<tr>
<td>ID</td>
<td>Ideal Date</td>
</tr>
<tr>
<td>IEM</td>
<td>Integrated Electronics Module</td>
</tr>
<tr>
<td>IOT</td>
<td>Instrument Operations Team</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Lab</td>
</tr>
<tr>
<td>JSpOC</td>
<td>Joint Space Operations Center</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>KSC</td>
<td>Kennedy Space Center</td>
</tr>
<tr>
<td>L0</td>
<td>Level-Zero</td>
</tr>
<tr>
<td>LS</td>
<td>Landsat</td>
</tr>
<tr>
<td>MLS</td>
<td>Microwave Limb Sounder</td>
</tr>
<tr>
<td>MLT</td>
<td>Mean Local Time</td>
</tr>
<tr>
<td>MLTAN</td>
<td>MLT of the Ascending Node</td>
</tr>
<tr>
<td>MMOD</td>
<td>Micrometeorite Orbital Debris</td>
</tr>
<tr>
<td>MMS</td>
<td>Mission Management System</td>
</tr>
<tr>
<td>MOWG</td>
<td>Mission Operations Working Group</td>
</tr>
<tr>
<td>MTS</td>
<td>Maneuver Trade Space</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics & Space Administration</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NYS</td>
<td>No Yaw Slew</td>
</tr>
<tr>
<td>Ops</td>
<td>Operations</td>
</tr>
<tr>
<td>OMI</td>
<td>Ozone Monitoring Instrument</td>
</tr>
<tr>
<td>ORR</td>
<td>Operational Readiness Review</td>
</tr>
<tr>
<td>PROP</td>
<td>Propulsion</td>
</tr>
<tr>
<td>Pc</td>
<td>Probability of Collision</td>
</tr>
<tr>
<td>R2</td>
<td>Receiver 2</td>
</tr>
<tr>
<td>RHEL</td>
<td>Red Hat Enterprise Linux</td>
</tr>
<tr>
<td>RMM</td>
<td>Risk Mitigation Maneuver</td>
</tr>
<tr>
<td>RW</td>
<td>Reaction Wheel Assembly</td>
</tr>
<tr>
<td>SC</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>SCS</td>
<td>Stored Command Sequence</td>
</tr>
<tr>
<td>SD</td>
<td>South Dakota</td>
</tr>
<tr>
<td>SMA</td>
<td>Semi-Major Axis</td>
</tr>
<tr>
<td>SMD</td>
<td>Science Mission Directorate</td>
</tr>
<tr>
<td>SSR</td>
<td>Solid State Recorder</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>TCS</td>
<td>Thermal Control System</td>
</tr>
<tr>
<td>TES</td>
<td>Tropospheric Emissions Spectrometer</td>
</tr>
<tr>
<td>THz</td>
<td>Terahertz</td>
</tr>
<tr>
<td>TMON</td>
<td>Telemetry Monitor</td>
</tr>
<tr>
<td>TROPOMI</td>
<td>Troposphere Measuring Instrument</td>
</tr>
<tr>
<td>WRS</td>
<td>World Reference System</td>
</tr>
</tbody>
</table>

12/6/2017
ESC MOWG - December 2017
46